Spaces:
				
			
			
	
			
			
		No application file
		
	
	
	
			
			
	
	
	
	
		
		
		No application file
		
	| """ | |
| A generic training script that works with any model and dataset. | |
| Author: Paul-Edouard Sarlin (skydes) | |
| """ | |
| import argparse | |
| import copy | |
| import re | |
| import shutil | |
| import signal | |
| from collections import defaultdict | |
| from pathlib import Path | |
| from pydoc import locate | |
| import numpy as np | |
| import torch | |
| from omegaconf import OmegaConf | |
| from torch.cuda.amp import GradScaler, autocast | |
| from torch.utils.tensorboard import SummaryWriter | |
| from tqdm import tqdm | |
| from . import __module_name__, logger | |
| from .datasets import get_dataset | |
| from .eval import run_benchmark | |
| from .models import get_model | |
| from .settings import EVAL_PATH, TRAINING_PATH | |
| from .utils.experiments import get_best_checkpoint, get_last_checkpoint, save_experiment | |
| from .utils.stdout_capturing import capture_outputs | |
| from .utils.tensor import batch_to_device | |
| from .utils.tools import ( | |
| AverageMetric, | |
| MedianMetric, | |
| PRMetric, | |
| RecallMetric, | |
| fork_rng, | |
| set_seed, | |
| ) | |
| # @TODO: Fix pbar pollution in logs | |
| # @TODO: add plotting during evaluation | |
| default_train_conf = { | |
| "seed": "???", # training seed | |
| "epochs": 1, # number of epochs | |
| "optimizer": "adam", # name of optimizer in [adam, sgd, rmsprop] | |
| "opt_regexp": None, # regular expression to filter parameters to optimize | |
| "optimizer_options": {}, # optional arguments passed to the optimizer | |
| "lr": 0.001, # learning rate | |
| "lr_schedule": { | |
| "type": None, # string in {factor, exp, member of torch.optim.lr_scheduler} | |
| "start": 0, | |
| "exp_div_10": 0, | |
| "on_epoch": False, | |
| "factor": 1.0, | |
| "options": {}, # add lr_scheduler arguments here | |
| }, | |
| "lr_scaling": [(100, ["dampingnet.const"])], | |
| "eval_every_iter": 1000, # interval for evaluation on the validation set | |
| "save_every_iter": 5000, # interval for saving the current checkpoint | |
| "log_every_iter": 200, # interval for logging the loss to the console | |
| "log_grad_every_iter": None, # interval for logging gradient hists | |
| "test_every_epoch": 1, # interval for evaluation on the test benchmarks | |
| "keep_last_checkpoints": 10, # keep only the last X checkpoints | |
| "load_experiment": None, # initialize the model from a previous experiment | |
| "median_metrics": [], # add the median of some metrics | |
| "recall_metrics": {}, # add the recall of some metrics | |
| "pr_metrics": {}, # add pr curves, set labels/predictions/mask keys | |
| "best_key": "loss/total", # key to use to select the best checkpoint | |
| "dataset_callback_fn": None, # data func called at the start of each epoch | |
| "dataset_callback_on_val": False, # call data func on val data? | |
| "clip_grad": None, | |
| "pr_curves": {}, | |
| "plot": None, | |
| "submodules": [], | |
| } | |
| default_train_conf = OmegaConf.create(default_train_conf) | |
| def do_evaluation(model, loader, device, loss_fn, conf, pbar=True): | |
| model.eval() | |
| results = {} | |
| pr_metrics = defaultdict(PRMetric) | |
| figures = [] | |
| if conf.plot is not None: | |
| n, plot_fn = conf.plot | |
| plot_ids = np.random.choice(len(loader), min(len(loader), n), replace=False) | |
| for i, data in enumerate( | |
| tqdm(loader, desc="Evaluation", ascii=True, disable=not pbar) | |
| ): | |
| data = batch_to_device(data, device, non_blocking=True) | |
| with torch.no_grad(): | |
| pred = model(data) | |
| losses, metrics = loss_fn(pred, data) | |
| if conf.plot is not None and i in plot_ids: | |
| figures.append(locate(plot_fn)(pred, data)) | |
| # add PR curves | |
| for k, v in conf.pr_curves.items(): | |
| pr_metrics[k].update( | |
| pred[v["labels"]], | |
| pred[v["predictions"]], | |
| mask=pred[v["mask"]] if "mask" in v.keys() else None, | |
| ) | |
| del pred, data | |
| numbers = {**metrics, **{"loss/" + k: v for k, v in losses.items()}} | |
| for k, v in numbers.items(): | |
| if k not in results: | |
| results[k] = AverageMetric() | |
| if k in conf.median_metrics: | |
| results[k + "_median"] = MedianMetric() | |
| if k in conf.recall_metrics.keys(): | |
| q = conf.recall_metrics[k] | |
| results[k + f"_recall{int(q)}"] = RecallMetric(q) | |
| results[k].update(v) | |
| if k in conf.median_metrics: | |
| results[k + "_median"].update(v) | |
| if k in conf.recall_metrics.keys(): | |
| q = conf.recall_metrics[k] | |
| results[k + f"_recall{int(q)}"].update(v) | |
| del numbers | |
| results = {k: results[k].compute() for k in results} | |
| return results, {k: v.compute() for k, v in pr_metrics.items()}, figures | |
| def filter_parameters(params, regexp): | |
| """Filter trainable parameters based on regular expressions.""" | |
| # Examples of regexp: | |
| # '.*(weight|bias)$' | |
| # 'cnn\.(enc0|enc1).*bias' | |
| def filter_fn(x): | |
| n, p = x | |
| match = re.search(regexp, n) | |
| if not match: | |
| p.requires_grad = False | |
| return match | |
| params = list(filter(filter_fn, params)) | |
| assert len(params) > 0, regexp | |
| logger.info("Selected parameters:\n" + "\n".join(n for n, p in params)) | |
| return params | |
| def get_lr_scheduler(optimizer, conf): | |
| """Get lr scheduler specified by conf.train.lr_schedule.""" | |
| if conf.type not in ["factor", "exp", None]: | |
| return getattr(torch.optim.lr_scheduler, conf.type)(optimizer, **conf.options) | |
| # backward compatibility | |
| def lr_fn(it): # noqa: E306 | |
| if conf.type is None: | |
| return 1 | |
| if conf.type == "factor": | |
| return 1.0 if it < conf.start else conf.factor | |
| if conf.type == "exp": | |
| gam = 10 ** (-1 / conf.exp_div_10) | |
| return 1.0 if it < conf.start else gam | |
| else: | |
| raise ValueError(conf.type) | |
| return torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_fn) | |
| def pack_lr_parameters(params, base_lr, lr_scaling): | |
| """Pack each group of parameters with the respective scaled learning rate.""" | |
| filters, scales = tuple(zip(*[(n, s) for s, names in lr_scaling for n in names])) | |
| scale2params = defaultdict(list) | |
| for n, p in params: | |
| scale = 1 | |
| # TODO: use proper regexp rather than just this inclusion check | |
| is_match = [f in n for f in filters] | |
| if any(is_match): | |
| scale = scales[is_match.index(True)] | |
| scale2params[scale].append((n, p)) | |
| logger.info( | |
| "Parameters with scaled learning rate:\n%s", | |
| {s: [n for n, _ in ps] for s, ps in scale2params.items() if s != 1}, | |
| ) | |
| lr_params = [ | |
| {"lr": scale * base_lr, "params": [p for _, p in ps]} | |
| for scale, ps in scale2params.items() | |
| ] | |
| return lr_params | |
| def training(rank, conf, output_dir, args): | |
| if args.restore: | |
| logger.info(f"Restoring from previous training of {args.experiment}") | |
| try: | |
| init_cp = get_last_checkpoint(args.experiment, allow_interrupted=False) | |
| except AssertionError: | |
| init_cp = get_best_checkpoint(args.experiment) | |
| logger.info(f"Restoring from checkpoint {init_cp.name}") | |
| init_cp = torch.load(str(init_cp), map_location="cpu") | |
| conf = OmegaConf.merge(OmegaConf.create(init_cp["conf"]), conf) | |
| conf.train = OmegaConf.merge(default_train_conf, conf.train) | |
| epoch = init_cp["epoch"] + 1 | |
| # get the best loss or eval metric from the previous best checkpoint | |
| best_cp = get_best_checkpoint(args.experiment) | |
| best_cp = torch.load(str(best_cp), map_location="cpu") | |
| best_eval = best_cp["eval"][conf.train.best_key] | |
| del best_cp | |
| else: | |
| # we start a new, fresh training | |
| conf.train = OmegaConf.merge(default_train_conf, conf.train) | |
| epoch = 0 | |
| best_eval = float("inf") | |
| if conf.train.load_experiment: | |
| logger.info(f"Will fine-tune from weights of {conf.train.load_experiment}") | |
| # the user has to make sure that the weights are compatible | |
| try: | |
| init_cp = get_last_checkpoint(conf.train.load_experiment) | |
| except AssertionError: | |
| init_cp = get_best_checkpoint(conf.train.load_experiment) | |
| # init_cp = get_last_checkpoint(conf.train.load_experiment) | |
| init_cp = torch.load(str(init_cp), map_location="cpu") | |
| # load the model config of the old setup, and overwrite with current config | |
| conf.model = OmegaConf.merge( | |
| OmegaConf.create(init_cp["conf"]).model, conf.model | |
| ) | |
| print(conf.model) | |
| else: | |
| init_cp = None | |
| OmegaConf.set_struct(conf, True) # prevent access to unknown entries | |
| set_seed(conf.train.seed) | |
| if rank == 0: | |
| writer = SummaryWriter(log_dir=str(output_dir)) | |
| data_conf = copy.deepcopy(conf.data) | |
| if args.distributed: | |
| logger.info(f"Training in distributed mode with {args.n_gpus} GPUs") | |
| assert torch.cuda.is_available() | |
| device = rank | |
| torch.distributed.init_process_group( | |
| backend="nccl", | |
| world_size=args.n_gpus, | |
| rank=device, | |
| init_method="file://" + str(args.lock_file), | |
| ) | |
| torch.cuda.set_device(device) | |
| # adjust batch size and num of workers since these are per GPU | |
| if "batch_size" in data_conf: | |
| data_conf.batch_size = int(data_conf.batch_size / args.n_gpus) | |
| if "train_batch_size" in data_conf: | |
| data_conf.train_batch_size = int(data_conf.train_batch_size / args.n_gpus) | |
| if "num_workers" in data_conf: | |
| data_conf.num_workers = int( | |
| (data_conf.num_workers + args.n_gpus - 1) / args.n_gpus | |
| ) | |
| else: | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| logger.info(f"Using device {device}") | |
| dataset = get_dataset(data_conf.name)(data_conf) | |
| # Optionally load a different validation dataset than the training one | |
| val_data_conf = conf.get("data_val", None) | |
| if val_data_conf is None: | |
| val_dataset = dataset | |
| else: | |
| val_dataset = get_dataset(val_data_conf.name)(val_data_conf) | |
| # @TODO: add test data loader | |
| if args.overfit: | |
| # we train and eval with the same single training batch | |
| logger.info("Data in overfitting mode") | |
| assert not args.distributed | |
| train_loader = dataset.get_overfit_loader("train") | |
| val_loader = val_dataset.get_overfit_loader("val") | |
| else: | |
| train_loader = dataset.get_data_loader("train", distributed=args.distributed) | |
| val_loader = val_dataset.get_data_loader("val") | |
| if rank == 0: | |
| logger.info(f"Training loader has {len(train_loader)} batches") | |
| logger.info(f"Validation loader has {len(val_loader)} batches") | |
| # interrupts are caught and delayed for graceful termination | |
| def sigint_handler(signal, frame): | |
| logger.info("Caught keyboard interrupt signal, will terminate") | |
| nonlocal stop | |
| if stop: | |
| raise KeyboardInterrupt | |
| stop = True | |
| stop = False | |
| signal.signal(signal.SIGINT, sigint_handler) | |
| model = get_model(conf.model.name)(conf.model).to(device) | |
| if args.compile: | |
| model = torch.compile(model, mode=args.compile) | |
| loss_fn = model.loss | |
| if init_cp is not None: | |
| model.load_state_dict(init_cp["model"], strict=False) | |
| if args.distributed: | |
| model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) | |
| model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device]) | |
| if rank == 0 and args.print_arch: | |
| logger.info(f"Model: \n{model}") | |
| torch.backends.cudnn.benchmark = True | |
| if args.detect_anomaly: | |
| torch.autograd.set_detect_anomaly(True) | |
| optimizer_fn = { | |
| "sgd": torch.optim.SGD, | |
| "adam": torch.optim.Adam, | |
| "adamw": torch.optim.AdamW, | |
| "rmsprop": torch.optim.RMSprop, | |
| }[conf.train.optimizer] | |
| params = [(n, p) for n, p in model.named_parameters() if p.requires_grad] | |
| if conf.train.opt_regexp: | |
| params = filter_parameters(params, conf.train.opt_regexp) | |
| all_params = [p for n, p in params] | |
| lr_params = pack_lr_parameters(params, conf.train.lr, conf.train.lr_scaling) | |
| optimizer = optimizer_fn( | |
| lr_params, lr=conf.train.lr, **conf.train.optimizer_options | |
| ) | |
| scaler = GradScaler(enabled=args.mixed_precision is not None) | |
| logger.info(f"Training with mixed_precision={args.mixed_precision}") | |
| mp_dtype = { | |
| "float16": torch.float16, | |
| "bfloat16": torch.bfloat16, | |
| None: torch.float32, # we disable it anyway | |
| }[args.mixed_precision] | |
| results = None # fix bug with it saving | |
| lr_scheduler = get_lr_scheduler(optimizer=optimizer, conf=conf.train.lr_schedule) | |
| if args.restore: | |
| optimizer.load_state_dict(init_cp["optimizer"]) | |
| if "lr_scheduler" in init_cp: | |
| lr_scheduler.load_state_dict(init_cp["lr_scheduler"]) | |
| if rank == 0: | |
| logger.info( | |
| "Starting training with configuration:\n%s", OmegaConf.to_yaml(conf) | |
| ) | |
| losses_ = None | |
| def trace_handler(p): | |
| # torch.profiler.tensorboard_trace_handler(str(output_dir)) | |
| output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10) | |
| print(output) | |
| p.export_chrome_trace("trace_" + str(p.step_num) + ".json") | |
| p.export_stacks("/tmp/profiler_stacks.txt", "self_cuda_time_total") | |
| if args.profile: | |
| prof = torch.profiler.profile( | |
| schedule=torch.profiler.schedule(wait=1, warmup=1, active=1, repeat=1), | |
| on_trace_ready=torch.profiler.tensorboard_trace_handler(str(output_dir)), | |
| record_shapes=True, | |
| profile_memory=True, | |
| with_stack=True, | |
| ) | |
| prof.__enter__() | |
| while epoch < conf.train.epochs and not stop: | |
| if rank == 0: | |
| logger.info(f"Starting epoch {epoch}") | |
| # we first run the eval | |
| if ( | |
| rank == 0 | |
| and epoch % conf.train.test_every_epoch == 0 | |
| and args.run_benchmarks | |
| ): | |
| for bname, eval_conf in conf.get("benchmarks", {}).items(): | |
| logger.info(f"Running eval on {bname}") | |
| s, f, r = run_benchmark( | |
| bname, | |
| eval_conf, | |
| EVAL_PATH / bname / args.experiment / str(epoch), | |
| model.eval(), | |
| ) | |
| logger.info(str(s)) | |
| for metric_name, value in s.items(): | |
| writer.add_scalar(f"test/{bname}/{metric_name}", value, epoch) | |
| for fig_name, fig in f.items(): | |
| writer.add_figure(f"figures/{bname}/{fig_name}", fig, epoch) | |
| # set the seed | |
| set_seed(conf.train.seed + epoch) | |
| # update learning rate | |
| if conf.train.lr_schedule.on_epoch and epoch > 0: | |
| old_lr = optimizer.param_groups[0]["lr"] | |
| lr_scheduler.step() | |
| logger.info( | |
| f'lr changed from {old_lr} to {optimizer.param_groups[0]["lr"]}' | |
| ) | |
| if args.distributed: | |
| train_loader.sampler.set_epoch(epoch) | |
| if epoch > 0 and conf.train.dataset_callback_fn and not args.overfit: | |
| loaders = [train_loader] | |
| if conf.train.dataset_callback_on_val: | |
| loaders += [val_loader] | |
| for loader in loaders: | |
| if isinstance(loader.dataset, torch.utils.data.Subset): | |
| getattr(loader.dataset.dataset, conf.train.dataset_callback_fn)( | |
| conf.train.seed + epoch | |
| ) | |
| else: | |
| getattr(loader.dataset, conf.train.dataset_callback_fn)( | |
| conf.train.seed + epoch | |
| ) | |
| for it, data in enumerate(train_loader): | |
| tot_it = (len(train_loader) * epoch + it) * ( | |
| args.n_gpus if args.distributed else 1 | |
| ) | |
| tot_n_samples = tot_it | |
| if not args.log_it: | |
| # We normalize the x-axis of tensorflow to num samples! | |
| tot_n_samples *= train_loader.batch_size | |
| model.train() | |
| optimizer.zero_grad() | |
| with autocast(enabled=args.mixed_precision is not None, dtype=mp_dtype): | |
| data = batch_to_device(data, device, non_blocking=True) | |
| pred = model(data) | |
| losses, _ = loss_fn(pred, data) | |
| loss = torch.mean(losses["total"]) | |
| if torch.isnan(loss).any(): | |
| print(f"Detected NAN, skipping iteration {it}") | |
| del pred, data, loss, losses | |
| continue | |
| do_backward = loss.requires_grad | |
| if args.distributed: | |
| do_backward = torch.tensor(do_backward).float().to(device) | |
| torch.distributed.all_reduce( | |
| do_backward, torch.distributed.ReduceOp.PRODUCT | |
| ) | |
| do_backward = do_backward > 0 | |
| if do_backward: | |
| scaler.scale(loss).backward() | |
| if args.detect_anomaly: | |
| # Check for params without any gradient which causes | |
| # problems in distributed training with checkpointing | |
| detected_anomaly = False | |
| for name, param in model.named_parameters(): | |
| if param.grad is None and param.requires_grad: | |
| print(f"param {name} has no gradient.") | |
| detected_anomaly = True | |
| if detected_anomaly: | |
| raise RuntimeError("Detected anomaly in training.") | |
| if conf.train.get("clip_grad", None): | |
| scaler.unscale_(optimizer) | |
| try: | |
| torch.nn.utils.clip_grad_norm_( | |
| all_params, | |
| max_norm=conf.train.clip_grad, | |
| error_if_nonfinite=True, | |
| ) | |
| scaler.step(optimizer) | |
| except RuntimeError: | |
| logger.warning("NaN detected in gradients. Skipping iteration.") | |
| scaler.update() | |
| else: | |
| scaler.step(optimizer) | |
| scaler.update() | |
| if not conf.train.lr_schedule.on_epoch: | |
| lr_scheduler.step() | |
| else: | |
| if rank == 0: | |
| logger.warning(f"Skip iteration {it} due to detach.") | |
| if args.profile: | |
| prof.step() | |
| if it % conf.train.log_every_iter == 0: | |
| for k in sorted(losses.keys()): | |
| if args.distributed: | |
| losses[k] = losses[k].sum(-1) | |
| torch.distributed.reduce(losses[k], dst=0) | |
| losses[k] /= train_loader.batch_size * args.n_gpus | |
| losses[k] = torch.mean(losses[k], -1) | |
| losses[k] = losses[k].item() | |
| if rank == 0: | |
| str_losses = [f"{k} {v:.3E}" for k, v in losses.items()] | |
| logger.info( | |
| "[E {} | it {}] loss {{{}}}".format( | |
| epoch, it, ", ".join(str_losses) | |
| ) | |
| ) | |
| for k, v in losses.items(): | |
| writer.add_scalar("training/" + k, v, tot_n_samples) | |
| writer.add_scalar( | |
| "training/lr", optimizer.param_groups[0]["lr"], tot_n_samples | |
| ) | |
| writer.add_scalar("training/epoch", epoch, tot_n_samples) | |
| if conf.train.log_grad_every_iter is not None: | |
| if it % conf.train.log_grad_every_iter == 0: | |
| grad_txt = "" | |
| for name, param in model.named_parameters(): | |
| if param.grad is not None and param.requires_grad: | |
| if name.endswith("bias"): | |
| continue | |
| writer.add_histogram( | |
| f"grad/{name}", param.grad.detach(), tot_n_samples | |
| ) | |
| norm = torch.norm(param.grad.detach(), 2) | |
| grad_txt += f"{name} {norm.item():.3f} \n" | |
| writer.add_text("grad/summary", grad_txt, tot_n_samples) | |
| del pred, data, loss, losses | |
| # Run validation | |
| if ( | |
| ( | |
| it % conf.train.eval_every_iter == 0 | |
| and (it > 0 or epoch == -int(args.no_eval_0)) | |
| ) | |
| or stop | |
| or it == (len(train_loader) - 1) | |
| ): | |
| with fork_rng(seed=conf.train.seed): | |
| results, pr_metrics, figures = do_evaluation( | |
| model, | |
| val_loader, | |
| device, | |
| loss_fn, | |
| conf.train, | |
| pbar=(rank == -1), | |
| ) | |
| if rank == 0: | |
| str_results = [ | |
| f"{k} {v:.3E}" | |
| for k, v in results.items() | |
| if isinstance(v, float) | |
| ] | |
| logger.info(f'[Validation] {{{", ".join(str_results)}}}') | |
| for k, v in results.items(): | |
| if isinstance(v, dict): | |
| writer.add_scalars(f"figure/val/{k}", v, tot_n_samples) | |
| else: | |
| writer.add_scalar("val/" + k, v, tot_n_samples) | |
| for k, v in pr_metrics.items(): | |
| writer.add_pr_curve("val/" + k, *v, tot_n_samples) | |
| # @TODO: optional always save checkpoint | |
| if results[conf.train.best_key] < best_eval: | |
| best_eval = results[conf.train.best_key] | |
| save_experiment( | |
| model, | |
| optimizer, | |
| lr_scheduler, | |
| conf, | |
| losses_, | |
| results, | |
| best_eval, | |
| epoch, | |
| tot_it, | |
| output_dir, | |
| stop, | |
| args.distributed, | |
| cp_name="checkpoint_best.tar", | |
| ) | |
| logger.info(f"New best val: {conf.train.best_key}={best_eval}") | |
| if len(figures) > 0: | |
| for i, figs in enumerate(figures): | |
| for name, fig in figs.items(): | |
| writer.add_figure( | |
| f"figures/{i}_{name}", fig, tot_n_samples | |
| ) | |
| torch.cuda.empty_cache() # should be cleared at the first iter | |
| if (tot_it % conf.train.save_every_iter == 0 and tot_it > 0) and rank == 0: | |
| if results is None: | |
| results, _, _ = do_evaluation( | |
| model, | |
| val_loader, | |
| device, | |
| loss_fn, | |
| conf.train, | |
| pbar=(rank == -1), | |
| ) | |
| best_eval = results[conf.train.best_key] | |
| best_eval = save_experiment( | |
| model, | |
| optimizer, | |
| lr_scheduler, | |
| conf, | |
| losses_, | |
| results, | |
| best_eval, | |
| epoch, | |
| tot_it, | |
| output_dir, | |
| stop, | |
| args.distributed, | |
| ) | |
| if stop: | |
| break | |
| if rank == 0: | |
| best_eval = save_experiment( | |
| model, | |
| optimizer, | |
| lr_scheduler, | |
| conf, | |
| losses_, | |
| results, | |
| best_eval, | |
| epoch, | |
| tot_it, | |
| output_dir=output_dir, | |
| stop=stop, | |
| distributed=args.distributed, | |
| ) | |
| epoch += 1 | |
| logger.info(f"Finished training on process {rank}.") | |
| if rank == 0: | |
| writer.close() | |
| def main_worker(rank, conf, output_dir, args): | |
| if rank == 0: | |
| with capture_outputs(output_dir / "log.txt"): | |
| training(rank, conf, output_dir, args) | |
| else: | |
| training(rank, conf, output_dir, args) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("experiment", type=str) | |
| parser.add_argument("--conf", type=str) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| "--mp", | |
| default=None, | |
| type=str, | |
| choices=["float16", "bfloat16"], | |
| ) | |
| parser.add_argument( | |
| "--compile", | |
| default=None, | |
| type=str, | |
| choices=["default", "reduce-overhead", "max-autotune"], | |
| ) | |
| parser.add_argument("--overfit", action="store_true") | |
| parser.add_argument("--restore", action="store_true") | |
| parser.add_argument("--distributed", action="store_true") | |
| parser.add_argument("--profile", action="store_true") | |
| parser.add_argument("--print_arch", "--pa", action="store_true") | |
| parser.add_argument("--detect_anomaly", "--da", action="store_true") | |
| parser.add_argument("--log_it", "--log_it", action="store_true") | |
| parser.add_argument("--no_eval_0", action="store_true") | |
| parser.add_argument("--run_benchmarks", action="store_true") | |
| parser.add_argument("dotlist", nargs="*") | |
| args = parser.parse_intermixed_args() | |
| logger.info(f"Starting experiment {args.experiment}") | |
| output_dir = Path(TRAINING_PATH, args.experiment) | |
| output_dir.mkdir(exist_ok=True, parents=True) | |
| conf = OmegaConf.from_cli(args.dotlist) | |
| if args.conf: | |
| conf = OmegaConf.merge(OmegaConf.load(args.conf), conf) | |
| elif args.restore: | |
| restore_conf = OmegaConf.load(output_dir / "config.yaml") | |
| conf = OmegaConf.merge(restore_conf, conf) | |
| if not args.restore: | |
| if conf.train.seed is None: | |
| conf.train.seed = torch.initial_seed() & (2**32 - 1) | |
| OmegaConf.save(conf, str(output_dir / "config.yaml")) | |
| # copy gluefactory and submodule into output dir | |
| for module in conf.train.get("submodules", []) + [__module_name__]: | |
| mod_dir = Path(__import__(str(module)).__file__).parent | |
| shutil.copytree(mod_dir, output_dir / module, dirs_exist_ok=True) | |
| if args.distributed: | |
| args.n_gpus = torch.cuda.device_count() | |
| args.lock_file = output_dir / "distributed_lock" | |
| if args.lock_file.exists(): | |
| args.lock_file.unlink() | |
| torch.multiprocessing.spawn( | |
| main_worker, nprocs=args.n_gpus, args=(conf, output_dir, args) | |
| ) | |
| else: | |
| main_worker(0, conf, output_dir, args) | |