Spaces:
Paused
Paused
Commit
·
2b32e3d
1
Parent(s):
881ee5b
app.py
Browse files
app.py
CHANGED
|
@@ -1,99 +1,98 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
|
| 5 |
-
torch.jit.script = lambda f: f
|
| 6 |
-
from diffusers import (
|
| 7 |
-
ControlNetModel,
|
| 8 |
-
StableDiffusionXLControlNetImg2ImgPipeline,
|
| 9 |
-
DDIMScheduler,
|
| 10 |
-
)
|
| 11 |
from compel import Compel, ReturnedEmbeddingsType
|
| 12 |
from PIL import Image
|
| 13 |
import os
|
| 14 |
import time
|
| 15 |
-
import numpy as np
|
| 16 |
|
| 17 |
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation
|
| 18 |
from utils.prompt_analysis import PromptAnalysis
|
| 19 |
|
| 20 |
-
path = os.getcwd()
|
| 21 |
-
cn_dir = f"{path}/controlnet"
|
| 22 |
-
os.makedirs(cn_dir)
|
| 23 |
-
tagger_dir = f"{path}/tagger"
|
| 24 |
-
os.mkdir(tagger_dir)
|
| 25 |
-
lora_dir = f"{path}/lora"
|
| 26 |
-
os.mkdir(lora_dir)
|
| 27 |
-
|
| 28 |
-
load_cn_model(cn_dir)
|
| 29 |
-
load_cn_config(cn_dir)
|
| 30 |
-
load_tagger_model(tagger_dir)
|
| 31 |
-
load_lora_model(lora_dir)
|
| 32 |
-
|
| 33 |
-
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
| 34 |
-
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
| 35 |
-
|
| 36 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
-
dtype = torch.float16
|
| 38 |
-
|
| 39 |
-
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
| 40 |
-
|
| 41 |
-
print(f"device: {device}")
|
| 42 |
-
print(f"dtype: {dtype}")
|
| 43 |
-
print(f"low memory: {LOW_MEMORY}")
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
model = "cagliostrolab/animagine-xl-3.1"
|
| 47 |
-
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
|
| 48 |
-
controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=torch.float16, use_safetensors=True)
|
| 49 |
-
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
| 50 |
-
model,
|
| 51 |
-
controlnet=controlnet,
|
| 52 |
-
torch_dtype=dtype,
|
| 53 |
-
use_safetensors=True,
|
| 54 |
-
scheduler=scheduler,
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
pipe.load_lora_weights(
|
| 58 |
-
lora_dir,
|
| 59 |
-
weight_name="sdxl_BWLine.safetensors"
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
compel = Compel(
|
| 64 |
-
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
| 65 |
-
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
| 66 |
-
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 67 |
-
requires_pooled=[False, True],
|
| 68 |
-
)
|
| 69 |
-
pipe = pipe.to(device)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
class Img2Img:
|
| 74 |
def __init__(self):
|
| 75 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
@spaces.GPU
|
| 78 |
-
def predict(
|
| 79 |
-
self,
|
| 80 |
-
input_image_path,
|
| 81 |
-
prompt,
|
| 82 |
-
negative_prompt,
|
| 83 |
-
controlnet_conditioning_scale,
|
| 84 |
-
):
|
| 85 |
input_image_pil = Image.open(input_image_path)
|
| 86 |
-
base_size =input_image_pil.size
|
| 87 |
-
resize_image= resize_image_aspect_ratio(input_image_pil)
|
| 88 |
resize_image_size = resize_image.size
|
| 89 |
-
width = resize_image_size
|
| 90 |
-
height = resize_image_size[1]
|
| 91 |
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
|
| 92 |
-
conditioning, pooled = compel([prompt, negative_prompt])
|
| 93 |
generator = torch.manual_seed(0)
|
| 94 |
last_time = time.time()
|
| 95 |
|
| 96 |
-
output_image = pipe(
|
| 97 |
image=white_base_pil,
|
| 98 |
control_image=resize_image,
|
| 99 |
strength=1.0,
|
|
@@ -103,7 +102,7 @@ class Img2Img:
|
|
| 103 |
negative_pooled_prompt_embeds=pooled[1:2],
|
| 104 |
width=width,
|
| 105 |
height=height,
|
| 106 |
-
controlnet_conditioning_scale=float(
|
| 107 |
controlnet_start=0.0,
|
| 108 |
controlnet_end=1.0,
|
| 109 |
generator=generator,
|
|
@@ -115,44 +114,5 @@ class Img2Img:
|
|
| 115 |
output_image = output_image.resize(base_size, Image.LANCZOS)
|
| 116 |
return output_image
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
#intro{
|
| 121 |
-
# max-width: 32rem;
|
| 122 |
-
# text-align: center;
|
| 123 |
-
# margin: 0 auto;
|
| 124 |
-
}
|
| 125 |
-
"""
|
| 126 |
-
def layout(self,css):
|
| 127 |
-
with gr.Blocks(css=css) as demo:
|
| 128 |
-
with gr.Column():
|
| 129 |
-
# 画像アップロード用の行
|
| 130 |
-
with gr.Row():
|
| 131 |
-
with gr.Column():
|
| 132 |
-
self.input_image_path = gr.Image(label="入力画像", type='filepath')
|
| 133 |
-
|
| 134 |
-
# プロンプト入力用の行
|
| 135 |
-
with gr.Row():
|
| 136 |
-
prompt_analysis = PromptAnalysis(tagger_dir)
|
| 137 |
-
[prompt, nega] = prompt_analysis.layout(self.input_image_path)
|
| 138 |
-
# 画像の詳細設定用のスライダー行
|
| 139 |
-
with gr.Row():
|
| 140 |
-
controlnet_conditioning_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, interactive=True, label="線画忠実度")
|
| 141 |
-
|
| 142 |
-
# 画像生成ボタンの行
|
| 143 |
-
with gr.Row():
|
| 144 |
-
generate_button = gr.Button("生成", interactive=False)
|
| 145 |
-
|
| 146 |
-
with gr.Column():
|
| 147 |
-
output_image = gr.Image(type="pil", label="Output Image")
|
| 148 |
-
|
| 149 |
-
# ボタンのクリックイベントを設定
|
| 150 |
-
generate_button.click(
|
| 151 |
-
fn=self.predict,
|
| 152 |
-
inputs=[self.input_image_path, prompt, nega, controlnet_conditioning_scale],
|
| 153 |
-
outputs=[output_image]
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
# デモの設定と起動
|
| 157 |
-
demo.queue(api_open=True)
|
| 158 |
-
demo.launch(show_api=True)
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, DDIMScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from compel import Compel, ReturnedEmbeddingsType
|
| 6 |
from PIL import Image
|
| 7 |
import os
|
| 8 |
import time
|
|
|
|
| 9 |
|
| 10 |
from utils.utils import load_cn_model, load_cn_config, load_tagger_model, load_lora_model, resize_image_aspect_ratio, base_generation
|
| 11 |
from utils.prompt_analysis import PromptAnalysis
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
class Img2Img:
|
| 14 |
def __init__(self):
|
| 15 |
+
self.setup_paths()
|
| 16 |
+
self.setup_models()
|
| 17 |
+
self.compel = self.setup_compel()
|
| 18 |
+
self.demo = self.layout()
|
| 19 |
+
|
| 20 |
+
def setup_paths(self):
|
| 21 |
+
self.path = os.getcwd()
|
| 22 |
+
self.cn_dir = f"{self.path}/controlnet"
|
| 23 |
+
self.tagger_dir = f"{self.path}/tagger"
|
| 24 |
+
self.lora_dir = f"{self.path}/lora"
|
| 25 |
+
os.makedirs(self.cn_dir, exist_ok=True)
|
| 26 |
+
os.makedirs(self.tagger_dir, exist_ok=True)
|
| 27 |
+
os.makedirs(self.lora_dir, exist_ok=True)
|
| 28 |
+
|
| 29 |
+
def setup_models(self):
|
| 30 |
+
load_cn_model(self.cn_dir)
|
| 31 |
+
load_cn_config(self.cn_dir)
|
| 32 |
+
load_tagger_model(self.tagger_dir)
|
| 33 |
+
load_lora_model(self.lora_dir)
|
| 34 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 35 |
+
self.dtype = torch.float16
|
| 36 |
+
self.model = "cagliostrolab/animagine-xl-3.1"
|
| 37 |
+
self.scheduler = DDIMScheduler.from_pretrained(self.model, subfolder="scheduler")
|
| 38 |
+
self.controlnet = ControlNetModel.from_pretrained(self.cn_dir, torch_dtype=self.dtype, use_safetensors=True)
|
| 39 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
| 40 |
+
self.model,
|
| 41 |
+
controlnet=self.controlnet,
|
| 42 |
+
torch_dtype=self.dtype,
|
| 43 |
+
use_safetensors=True,
|
| 44 |
+
scheduler=self.scheduler,
|
| 45 |
+
)
|
| 46 |
+
self.pipe.load_lora_weights(self.lora_dir, weight_name="sdxl_BWLine.safetensors")
|
| 47 |
+
self.pipe = self.pipe.to(self.device)
|
| 48 |
+
|
| 49 |
+
def setup_compel(self):
|
| 50 |
+
return Compel(
|
| 51 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
| 52 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
| 53 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 54 |
+
requires_pooled=[False, True],
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
def layout(self):
|
| 58 |
+
css = """
|
| 59 |
+
#intro{
|
| 60 |
+
max-width: 32rem;
|
| 61 |
+
text-align: center;
|
| 62 |
+
margin: 0 auto;
|
| 63 |
+
}
|
| 64 |
+
"""
|
| 65 |
+
with gr.Blocks(css=css) as demo:
|
| 66 |
+
with gr.Row():
|
| 67 |
+
with gr.Column():
|
| 68 |
+
self.input_image_path = gr.Image(label="入力画像", type='filepath')
|
| 69 |
+
self.prompt_analysis = PromptAnalysis(self.tagger_dir)
|
| 70 |
+
self.prompt, self.negative_prompt = self.prompt_analysis.layout(self.input_image_path)
|
| 71 |
+
self.controlnet_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, label="線画忠実度")
|
| 72 |
+
generate_button = gr.Button("生成")
|
| 73 |
+
with gr.Column():
|
| 74 |
+
self.output_image = gr.Image(type="pil", label="生成画像")
|
| 75 |
+
|
| 76 |
+
generate_button.click(
|
| 77 |
+
fn=self.predict,
|
| 78 |
+
inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
|
| 79 |
+
outputs=self.output_image
|
| 80 |
+
)
|
| 81 |
+
return demo
|
| 82 |
|
| 83 |
@spaces.GPU
|
| 84 |
+
def predict(self, input_image_path, prompt, negative_prompt, controlnet_scale):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
input_image_pil = Image.open(input_image_path)
|
| 86 |
+
base_size = input_image_pil.size
|
| 87 |
+
resize_image = resize_image_aspect_ratio(input_image_pil)
|
| 88 |
resize_image_size = resize_image.size
|
| 89 |
+
width, height = resize_image_size
|
|
|
|
| 90 |
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
|
| 91 |
+
conditioning, pooled = self.compel([prompt, negative_prompt])
|
| 92 |
generator = torch.manual_seed(0)
|
| 93 |
last_time = time.time()
|
| 94 |
|
| 95 |
+
output_image = self.pipe(
|
| 96 |
image=white_base_pil,
|
| 97 |
control_image=resize_image,
|
| 98 |
strength=1.0,
|
|
|
|
| 102 |
negative_pooled_prompt_embeds=pooled[1:2],
|
| 103 |
width=width,
|
| 104 |
height=height,
|
| 105 |
+
controlnet_conditioning_scale=float(controlnet_scale),
|
| 106 |
controlnet_start=0.0,
|
| 107 |
controlnet_end=1.0,
|
| 108 |
generator=generator,
|
|
|
|
| 114 |
output_image = output_image.resize(base_size, Image.LANCZOS)
|
| 115 |
return output_image
|
| 116 |
|
| 117 |
+
img2img = Img2Img()
|
| 118 |
+
img2img.demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|