Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| from transformers import T5ForConditionalGeneration, T5Tokenizer | |
| def tras_sum(input): | |
| model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048' | |
| model = T5ForConditionalGeneration.from_pretrained(model_name) | |
| tokenizer = T5Tokenizer.from_pretrained(model_name) | |
| # text summary generate | |
| prefix = 'summary to en: ' | |
| src_text = prefix + input | |
| input_ids = tokenizer(src_text, return_tensors="pt") | |
| generated_tokens = model.generate(**input_ids) | |
| traslated_summary = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
| return traslated_summary | |
| # Load the summarization & translation model pipeline | |
| sentiment_pipeline = pipeline("text-classification", model='Howosn/Sentiment_Model',return_all_scores=True) | |
| # Streamlit application title | |
| st.title("Emotion analysis") | |
| st.write("Turn Your Input Into Sentiment Score") | |
| # Text input for the user to enter the text to analyze | |
| text = st.text_area("Enter the text", "") | |
| # Perform analysis result when the user clicks the "Analyse" button | |
| if st.button("Analyse"): | |
| # Perform text classification on the input text | |
| trans = tras_sum(text)[0] | |
| results = sentiment_pipeline(trans)[0] | |
| # Display the classification result | |
| max_score = float('-inf') | |
| max_label = '' | |
| for result in results: | |
| if result['score'] > max_score: | |
| max_score = result['score'] | |
| max_label = result['label'] | |
| st.write("Text:", trans) | |
| st.write("Label:", max_label) | |
| st.write("Score:", max_score) |