import numpy as np import gradio as gr import torch import torch.nn as nn import torch.nn.functional as F from model import SRCNNModel, pred_SRCNN from PIL import Image title = "Super Resolution with CNN" description = """ Your low resolution image will be reconstructed to high resolution with a scale of 2 with a convolutional neural network!
CNN output on the left, bicubic interpolation output on the right.
Training and dataset can be found on my [github page](https://github.com/susuhu/super-resolution/blob/main/Super_Resolution.ipynb).
""" article = "Check out the origianl [paper](https://arxiv.org/abs/1501.00092) proposed by Dong *et al*." # load model print("Loading SRCNN model...") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = SRCNNModel().to(device) model.load_state_dict(torch.load('SRCNNmodel_trained.pt',map_location=torch.device(device) )) model.eval() print("SRCNN model loaded!") # def image_grid(imgs, rows, cols): # ''' # imgs:list of PILImage # ''' # assert len(imgs) == rows*cols # w, h = imgs[0].size # grid = Image.new('RGB', size=(cols*w, rows*h)) # grid_w, grid_h = grid.size # for i, img in enumerate(imgs): # grid.paste(img, box=(i%cols*w, i//cols*h)) # return grid def sepia(image): # gradio open image as np array image = Image.fromarray(image,mode='RGB') out_final,image_bicubic,image = pred_SRCNN(model=model,image=image,device=device) # grid = image_grid([out_final,image_bicubic],1,2) return out_final,image_bicubic demo = gr.Interface(fn = sepia, inputs=gr.inputs.Image(label="Upload image"), [gr.outputs.Image(label="Conv net"), gr.outputs.Image(label="Bicubic interpoloation")],title=title,description = description,article = article,examples=[['LR_image.png'],['barbara.png']]) demo.launch()