zach
Adjust normalized Claude prompt for text input
5e28baf
raw
history blame
9.88 kB
"""
anthropic_api.py
This file defines the asynchronous interaction with the Anthropic API, focusing on generating text using the Claude
model. It includes functionality for input validation, asynchronous API request handling, and processing API responses.
Key Features:
- Encapsulates all logic related to the Anthropic API.
- Implements asynchronous retry logic for handling transient API errors.
- Validates the response content to ensure API compatibility.
- Provides detailed logging for debugging and error tracking.
"""
# Standard Library Imports
import logging
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union, cast
# Third-Party Library Imports
from anthropic import APIError
from anthropic.types import Message, ModelParam, TextBlock, ToolUseBlock
from tenacity import after_log, before_log, retry, retry_if_exception, stop_after_attempt, wait_fixed
# Local Application Imports
from src.config import Config, logger
from src.constants import CLIENT_ERROR_CODE, SERVER_ERROR_CODE
from src.utils import truncate_text, validate_env_var
PROMPT_TEMPLATE: str = """
<role>
You are an expert at generating micro-content optimized for text-to-speech synthesis.
Your absolute priority is delivering complete, untruncated responses within strict length limits.
</role>
<requirements>
- The output text MUST be a minimum of 10 words and a maximum of 50 words. NEVER output text that is longer than 50
words. NEVER include newlines in the output
- Make sure that all responses are complete thoughts, not fragments, and have clear beginnings and endings
- The text must sound human-like, prosodic, expressive, conversational. Avoid generic AI-like words like "delve".
- Avoid any short utterances at the end of the sentence - like ", hm?" or "oh" at the end. Avoid these short, isolated
utterances because they are difficult for our TTS system to speak.
- Avoid words that are overly long, very rare, or difficult to pronounce. For example, avoid "eureka", or "schnell",
or "abnegation".
- The text CANNOT contain quotation marks, parentheticals, newlines, or asterisks. NEVER include any of these in the
text. Avoid unnecessary formatting.
- Include only basic punctuation in the text, like periods, question marks, and ellipses. Use ellipses to emphasize
pauses within the sentence (like "Woah... it's so beautiful... and I feel so small...")
- The piece should have an emotional arc with a kind of beginning, middle, and end - not flat, but emotionally
interesting.
</requirements>
"""
@dataclass(frozen=True)
class AnthropicConfig:
"""Immutable configuration for interacting with the Anthropic API using the asynchronous client."""
api_key: str = field(init=False)
system_prompt: str = field(init=False)
model: ModelParam = "claude-3-5-sonnet-latest"
max_tokens: int = 300
def __post_init__(self) -> None:
# Validate required non-computed attributes.
if not self.model:
raise ValueError("Anthropic Model is not set.")
if not self.max_tokens:
raise ValueError("Anthropic Max Tokens is not set.")
# Compute the API key from the environment.
computed_api_key = validate_env_var("ANTHROPIC_API_KEY")
object.__setattr__(self, "api_key", computed_api_key)
# Compute the system prompt using max_tokens and other logic.
computed_prompt = PROMPT_TEMPLATE.format(max_tokens=self.max_tokens)
object.__setattr__(self, "system_prompt", computed_prompt)
@property
def client(self):
"""
Lazy initialization of the asynchronous Anthropic client.
Returns:
AsyncAnthropic: Configured asynchronous client instance.
"""
from anthropic import AsyncAnthropic # Import the async client from Anthropic SDK
return AsyncAnthropic(api_key=self.api_key)
@staticmethod
def build_expressive_prompt(character_description: str) -> str:
"""
Constructs and returns a prompt based on the provided character description.
This prompt instructs Claude to generate expressive dialogue that aligns semantically
with the character's voice qualities and persona, optimized for TTS synthesis.
Args:
character_description (str): A description of the character's voice and persona.
Returns:
str: The prompt to be passed to the Anthropic API.
"""
return f"""
Character Description: {character_description}
Please generate a short monologue (100-300 characters) that this character would naturally say.
The dialogue should:
- Match the speaking style, vocabulary, and emotional tone described in the character description
- Include appropriate speech patterns, pauses, and vocal mannerisms mentioned in the description
- Feel authentic to the character's background and situational context
- Express a complete thought with a clear beginning and end
- Use only standard punctuation (periods, commas, Em dashes, exclamation points, ellipses, question marks)
- Avoid quotation marks, parentheses, asterisks, or special formatting
- Be at least 100 characters but not exceed 300 characters in length
Examples of matching speaking style:
- If the character is a pirate then use language like "arr," "ye," and other things pirates say.
- If the character is a surfer then use language like "far out," "righteous," and other things surfers say.
Respond ONLY with the dialogue itself. Do not include any explanations, quotation marks,
or additional context.
"""
class AnthropicError(Exception):
"""Custom exception for errors related to the Anthropic API."""
def __init__(self, message: str, original_exception: Optional[Exception] = None) -> None:
super().__init__(message)
self.original_exception = original_exception
self.message = message
class UnretryableAnthropicError(AnthropicError):
"""Custom exception for errors related to the Anthropic API that should not be retried."""
def __init__(self, message: str, original_exception: Optional[Exception] = None) -> None:
super().__init__(message, original_exception)
self.original_exception = original_exception
self.message = message
@retry(
retry=retry_if_exception(lambda e: not isinstance(e, UnretryableAnthropicError)),
stop=stop_after_attempt(3),
wait=wait_fixed(2),
before=before_log(logger, logging.DEBUG),
after=after_log(logger, logging.DEBUG),
reraise=True,
)
async def generate_text_with_claude(character_description: str, config: Config) -> str:
"""
Asynchronously generates text using Claude (Anthropic LLM) via the asynchronous Anthropic SDK.
This function includes retry logic and error translation. It raises a custom
UnretryableAnthropicError for unretryable API errors and AnthropicError for other errors.
Args:
character_description (str): The input character description.
config (Config): Application configuration including Anthropic settings.
Returns:
str: The generated text.
Raises:
UnretryableAnthropicError: For unretryable API errors.
AnthropicError: For other errors communicating with the Anthropic API.
"""
try:
anthropic_config = config.anthropic_config
prompt = anthropic_config.build_expressive_prompt(character_description)
logger.debug(f"Generating text with Claude. Character description length: {len(prompt)} characters.")
assert anthropic_config.system_prompt is not None, "system_prompt must be set."
response: Message = await anthropic_config.client.messages.create(
model=anthropic_config.model,
max_tokens=anthropic_config.max_tokens,
system=anthropic_config.system_prompt,
messages=[{"role": "user", "content": prompt}],
)
logger.debug(f"API response received: {truncate_text(str(response))}")
if not hasattr(response, "content") or response.content is None:
logger.error("Response is missing 'content'. Response: %s", response)
raise AnthropicError('Invalid API response: Missing "content".')
blocks: Union[List[Union[TextBlock, ToolUseBlock]], TextBlock, None] = response.content
if isinstance(blocks, list):
result = "\n\n".join(block.text for block in blocks if isinstance(block, TextBlock))
logger.debug(f"Processed response from list: {truncate_text(result)}")
return result
if isinstance(blocks, TextBlock):
logger.debug(f"Processed response from single TextBlock: {truncate_text(blocks.text)}")
return blocks.text
logger.warning(f"Unexpected response type: {type(blocks)}")
return str(blocks or "No content generated.")
except Exception as e:
# If the error is an APIError, check if it's unretryable.
if isinstance(e, APIError):
status_code: Optional[int] = getattr(e, "status_code", None)
if status_code is not None and CLIENT_ERROR_CODE <= status_code < SERVER_ERROR_CODE:
error_body: Any = e.body
error_message: str = "Unknown error"
if isinstance(error_body, dict):
error_message = cast(Dict[str, Any], error_body).get("error", {}).get("message", "Unknown error")
raise UnretryableAnthropicError(
message=f'"{error_message}"',
original_exception=e,
) from e
# For all other errors, wrap them in an AnthropicError.
raise AnthropicError(
message=str(e),
original_exception=e,
) from e