Spaces:
Sleeping
Sleeping
Create app.py file
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import tensorflow as tf
|
5 |
+
from keras.preprocessing import image
|
6 |
+
from keras.models import load_model
|
7 |
+
|
8 |
+
# Load the trained model
|
9 |
+
model_path = 'SCDSNet-H10K_Model-1.keras'
|
10 |
+
model = load_model(model_path)
|
11 |
+
|
12 |
+
# Define the class labels
|
13 |
+
classes = ['akiec', 'bcc', 'bkl', 'df', 'melanoma', 'nv', 'vasc']
|
14 |
+
|
15 |
+
# Function to preprocess the image
|
16 |
+
def preprocess_image(image_bytes):
|
17 |
+
img = Image.open(image_bytes).convert('RGB')
|
18 |
+
img = img.resize((32, 32))
|
19 |
+
img_array = image.img_to_array(img)
|
20 |
+
img_array = np.expand_dims(img_array, axis=0)
|
21 |
+
img_array = img_array / 255.0
|
22 |
+
return img_array
|
23 |
+
|
24 |
+
# Function to predict class label and probability
|
25 |
+
def predict_image(image_bytes):
|
26 |
+
img_array = preprocess_image(image_bytes)
|
27 |
+
predictions = model.predict(img_array)
|
28 |
+
score = tf.nn.softmax(predictions[0])
|
29 |
+
predicted_class = classes[np.argmax(score)]
|
30 |
+
return predicted_class
|
31 |
+
|
32 |
+
# Create a Gradio interface
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=predict_image,
|
35 |
+
inputs="file",
|
36 |
+
outputs=["label"],
|
37 |
+
title="Skin Cancer Classification",
|
38 |
+
description="Upload an image of a skin lesion for classification."
|
39 |
+
)
|
40 |
+
|
41 |
+
# Launch the interface
|
42 |
+
iface.launch()
|