NLSQL / app.py
fkalpana's picture
Update app.py
4c23181 verified
raw
history blame
1.08 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
# Initialize the pipeline
nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
def generate_sql(query):
# Use the model to generate SQL from the natural language query
results = nl2sql_pipeline(query)
# Extract the first result (highest likelihood)
sql_query = results[0]['generated_text']
return sql_query
# Create a Gradio interface
interface = gr.Interface(
fn=generate_sql,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your natural language query here..."),
outputs="text",
title="NL to SQL with Picard",
description="This model converts natural language queries into SQL. It's based on the Spider dataset. Enter a query to get started!"
)
# Launch the app
if __name__ == "__main__":
interface.launch()