HusnaManakkot commited on
Commit
05d92f8
Β·
verified Β·
1 Parent(s): e291093

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -1,9 +1,13 @@
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
 
3
 
4
  # Load tokenizer and model
5
- tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base-sql-en")
6
- model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/codet5-base-sql-en")
 
 
 
7
 
8
  def generate_sql(query):
9
  inputs = tokenizer(query, return_tensors="pt", padding=True)
@@ -11,13 +15,17 @@ def generate_sql(query):
11
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
12
  return sql_query
13
 
 
 
 
14
  # Create a Gradio interface
15
  interface = gr.Interface(
16
  fn=generate_sql,
17
  inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
18
  outputs="text",
19
- title="NL to SQL with CodeT5",
20
- description="This model converts natural language queries into SQL using datasets. Enter your query and get the SQL translation!"
 
21
  )
22
 
23
  # Launch the app
 
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+ from datasets import load_dataset
4
 
5
  # Load tokenizer and model
6
+ tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
7
+ model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
8
+
9
+ # Load a part of the Spider dataset
10
+ spider_dataset = load_dataset("spider", split='train[:5]')
11
 
12
  def generate_sql(query):
13
  inputs = tokenizer(query, return_tensors="pt", padding=True)
 
15
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
16
  return sql_query
17
 
18
+ # Use examples from the Spider dataset
19
+ example_questions = [(question['question'],) for question in spider_dataset]
20
+
21
  # Create a Gradio interface
22
  interface = gr.Interface(
23
  fn=generate_sql,
24
  inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
25
  outputs="text",
26
+ examples=example_questions,
27
+ title="NL to SQL with Picard",
28
+ description="This model converts natural language queries into SQL using the Spider dataset. Try one of the example questions or enter your own!"
29
  )
30
 
31
  # Launch the app