HusnaManakkot commited on
Commit
599a21f
Β·
verified Β·
1 Parent(s): 01221dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -10
app.py CHANGED
@@ -1,10 +1,10 @@
1
  import gradio as gr
2
- from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline
3
  from datasets import load_dataset
4
 
5
  # Load tokenizer and model
6
- tokenizer = T5Tokenizer.from_pretrained("t5-base")
7
- model = T5ForConditionalGeneration.from_pretrained("t5-base")
8
 
9
  # Initialize the pipeline
10
  nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
@@ -13,11 +13,7 @@ nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokeni
13
  spider_dataset = load_dataset("spider", split='train[:5]')
14
 
15
  def generate_sql(query):
16
- # Format the input for the model
17
- input_text = f"translate English to SQL: {query}"
18
- # Run the pipeline
19
- results = nl2sql_pipeline(input_text, max_length=512, num_return_sequences=1)
20
- # Extract the SQL query
21
  sql_query = results[0]['generated_text']
22
  return sql_query
23
 
@@ -30,10 +26,10 @@ interface = gr.Interface(
30
  inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
31
  outputs="text",
32
  examples=example_questions,
33
- title="NL to SQL with T5",
34
  description="This model converts natural language queries into SQL using the Spider dataset. Try one of the example questions or enter your own!"
35
  )
36
 
37
  # Launch the app
38
  if __name__ == "__main__":
39
- interface.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
3
  from datasets import load_dataset
4
 
5
  # Load tokenizer and model
6
+ tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
7
+ model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
8
 
9
  # Initialize the pipeline
10
  nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
 
13
  spider_dataset = load_dataset("spider", split='train[:5]')
14
 
15
  def generate_sql(query):
16
+ results = nl2sql_pipeline(query)
 
 
 
 
17
  sql_query = results[0]['generated_text']
18
  return sql_query
19
 
 
26
  inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
27
  outputs="text",
28
  examples=example_questions,
29
+ title="NL to SQL with Picard",
30
  description="This model converts natural language queries into SQL using the Spider dataset. Try one of the example questions or enter your own!"
31
  )
32
 
33
  # Launch the app
34
  if __name__ == "__main__":
35
+ interface.launch()