fkalpana commited on
Commit
75e09ad
Β·
verified Β·
1 Parent(s): fd893e6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -11
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
 
3
 
4
  # Load tokenizer and model
5
  tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
@@ -8,21 +9,16 @@ model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-fin
8
  # Initialize the pipeline
9
  nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
10
 
 
 
 
11
  def generate_sql(query):
12
- # Use the model to generate SQL from the natural language query
13
  results = nl2sql_pipeline(query)
14
- # Extract the first result (highest likelihood)
15
  sql_query = results[0]['generated_text']
16
  return sql_query
17
 
18
- # Example questions from the Spider dataset
19
- example_questions = [
20
- ("How many heads of the departments are older than 56 ?",),
21
- ("List the name, born state and age of the heads of departments ordered by age.",),
22
- ("List the creation year, name and budget of each department.",),
23
- ("What are the maximum and minimum budget of the departments?",),
24
- ("In which year were most departments established?.",)
25
- ]
26
 
27
  # Create a Gradio interface
28
  interface = gr.Interface(
@@ -31,7 +27,7 @@ interface = gr.Interface(
31
  outputs="text",
32
  examples=example_questions,
33
  title="NL to SQL with Picard",
34
- description="This model converts natural language queries into SQL. It's based on the Spider dataset. Try one of the example questions or enter your own!"
35
  )
36
 
37
  # Launch the app
 
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
3
+ from datasets import load_dataset
4
 
5
  # Load tokenizer and model
6
  tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
 
9
  # Initialize the pipeline
10
  nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
11
 
12
+ # Load a part of the Spider dataset
13
+ spider_dataset = load_dataset("spider", split='train[:5]')
14
+
15
  def generate_sql(query):
 
16
  results = nl2sql_pipeline(query)
 
17
  sql_query = results[0]['generated_text']
18
  return sql_query
19
 
20
+ # Use examples from the Spider dataset
21
+ example_questions = [(question['question'],) for question in spider_dataset]
 
 
 
 
 
 
22
 
23
  # Create a Gradio interface
24
  interface = gr.Interface(
 
27
  outputs="text",
28
  examples=example_questions,
29
  title="NL to SQL with Picard",
30
+ description="This model converts natural language queries into SQL using the Spider dataset. Try one of the example questions or enter your own!"
31
  )
32
 
33
  # Launch the app