HusnaManakkot commited on
Commit
b8ee71c
Β·
verified Β·
1 Parent(s): 91b0752

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -19
app.py CHANGED
@@ -1,40 +1,35 @@
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  from datasets import load_dataset
4
- from difflib import get_close_matches
5
 
6
  # Load the Spider dataset
7
- spider_dataset = load_dataset("spider", split='train[:100]') # Increase the number of examples for better matching
8
 
9
  # Load tokenizer and model
10
  tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
11
  model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
12
 
13
- def find_closest_match(query, dataset):
14
- questions = [item['question'] for item in dataset]
15
- matches = get_close_matches(query, questions, n=1)
16
- return matches[0] if matches else None
 
17
 
18
- def generate_sql_from_user_input(query):
19
- # Find the closest match in the dataset
20
- matched_query = find_closest_match(query, spider_dataset)
21
- if not matched_query:
22
- return "No close match found in the dataset.", ""
23
-
24
- # Generate SQL for the matched query
25
- input_text = "translate English to SQL: " + matched_query
26
  inputs = tokenizer(input_text, return_tensors="pt", padding=True)
27
  outputs = model.generate(**inputs, max_length=512)
28
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
29
- return matched_query, sql_query
30
 
31
  # Create a Gradio interface
32
  interface = gr.Interface(
33
- fn=generate_sql_from_user_input,
34
- inputs=gr.Textbox(label="Enter your natural language query"),
35
- outputs=[gr.Textbox(label="Matched Query from Dataset"), gr.Textbox(label="Generated SQL Query")],
36
  title="NL to SQL with T5 using Spider Dataset",
37
- description="This model finds the closest match in the Spider dataset for your query and generates the corresponding SQL."
38
  )
39
 
40
  # Launch the app
 
1
  import gradio as gr
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  from datasets import load_dataset
 
4
 
5
  # Load the Spider dataset
6
+ spider_dataset = load_dataset("spider", split='train[:1000]')
7
 
8
  # Load tokenizer and model
9
  tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
10
  model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
11
 
12
+ def generate_sql_from_dataset(index):
13
+ # Ensure the index is within the range of the dataset
14
+ index = int(index) # Convert to integer in case it's passed as a string
15
+ if index < 0 or index >= len(spider_dataset):
16
+ return "Invalid index. Please enter a number between 0 and {}.".format(len(spider_dataset) - 1), ""
17
 
18
+ # Get the natural language query from the dataset
19
+ query = spider_dataset[index]['question']
20
+ input_text = "translate English to SQL: " + query
 
 
 
 
 
21
  inputs = tokenizer(input_text, return_tensors="pt", padding=True)
22
  outputs = model.generate(**inputs, max_length=512)
23
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
24
+ return query, sql_query
25
 
26
  # Create a Gradio interface
27
  interface = gr.Interface(
28
+ fn=generate_sql_from_dataset,
29
+ inputs=gr.Number(label="Dataset Index (0-4)"),
30
+ outputs=[gr.Textbox(label="Natural Language Query"), gr.Textbox(label="Generated SQL Query")],
31
  title="NL to SQL with T5 using Spider Dataset",
32
+ description="This model converts natural language queries from the Spider dataset into SQL. Enter the index of the dataset entry (0-4)!"
33
  )
34
 
35
  # Launch the app