Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_groq import ChatGroq | |
| from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.prompts import PromptTemplate | |
| import tempfile | |
| from gtts import gTTS | |
| import os | |
| def text_to_speech(text): | |
| tts = gTTS(text=text, lang='en') | |
| audio_file = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) | |
| temp_filename = audio_file.name | |
| tts.save(temp_filename) | |
| st.audio(temp_filename, format='audio/mp3') | |
| os.remove(temp_filename) | |
| def get_pdf_text(pdf_docs): | |
| text="" | |
| for pdf in pdf_docs: | |
| pdf_reader= PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text+= page.extract_text() | |
| return text | |
| def get_text_chunks(text): | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vector_store(text_chunks, api_key): | |
| embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2") | |
| vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
| vector_store.save_local("faiss_index") | |
| def get_conversational_chain(): | |
| prompt_template = """ | |
| Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in | |
| provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n | |
| Context:\n {context}?\n | |
| Question: \n{question}\n | |
| Answer: | |
| """ | |
| model = ChatGroq(temperature=0, groq_api_key=os.environ["groq_api_key"], model_name="llama3-8b-8192") | |
| prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
| chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
| return chain | |
| def user_input(user_question, api_key): | |
| embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2") | |
| new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
| docs = new_db.similarity_search(user_question) | |
| chain = get_conversational_chain() | |
| response = chain( | |
| {"input_documents":docs, "question": user_question} | |
| , return_only_outputs=True) | |
| print(response) # Debugging line | |
| st.write("Replies:") | |
| if isinstance(response["output_text"], str): | |
| response_list = [response["output_text"]] | |
| else: | |
| response_list = response["output_text"] | |
| for text in response_list: | |
| st.write(text) | |
| # Convert text to speech for each response | |
| text_to_speech(text) | |
| def main(): | |
| st.set_page_config(layout="centered") | |
| st.header("Chat with DOCS") | |
| st.markdown("<h1 style='font-size:20px;'>ChatBot by Muhammad Huzaifa</h1>", unsafe_allow_html=True) | |
| api_key = st.secrets["inference_api_key"] | |
| with st.sidebar: | |
| st.header("Chat with PDF") | |
| # st.title("Menu:") | |
| pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit Button", accept_multiple_files=True, type=["pdf"]) | |
| if st.button("Submit"): | |
| with st.spinner("Processing..."): | |
| raw_text = get_pdf_text(pdf_docs) | |
| text_chunks = get_text_chunks(raw_text) | |
| get_vector_store(text_chunks, api_key) | |
| st.success("Done") | |
| if st.button("Summerize Chat"): | |
| st.switch_page('pages/summarizer.py') | |
| # Check if any document is uploaded | |
| if pdf_docs: | |
| user_question = st.text_input("Ask a question from the Docs") | |
| if user_question: | |
| user_input(user_question, api_key) | |
| else: | |
| st.write("Please upload a document first to ask questions.") | |
| if __name__ == "__main__": | |
| main() | |