Spaces:
Runtime error
Runtime error
Update pages/textimage.py
Browse files- pages/textimage.py +75 -50
pages/textimage.py
CHANGED
|
@@ -1,69 +1,94 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import os
|
| 3 |
-
import random
|
| 4 |
-
import spaces
|
| 5 |
-
import numpy as np
|
| 6 |
import torch
|
| 7 |
-
|
| 8 |
-
from
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# Check
|
| 12 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
device=device
|
| 25 |
-
)
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
def generate_image(prompt: str) -> Tuple[str, int]:
|
| 29 |
-
seed = random.randint(0, np.iinfo(np.int32).max)
|
| 30 |
images = pipe(
|
| 31 |
-
prompt=
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
num_images_per_prompt=1,
|
| 37 |
use_resolution_binning=True,
|
| 38 |
output_type="pil",
|
| 39 |
).images
|
| 40 |
|
| 41 |
-
# Save image and
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
def
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
def main():
|
| 53 |
-
st.set_page_config(layout="wide")
|
| 54 |
-
st.title("Instant Image Generator")
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
if prompt:
|
| 62 |
-
# Generate image based on prompt
|
| 63 |
-
image_path, seed = generate_image(prompt)
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
if
|
| 69 |
-
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import random
|
| 6 |
+
import uuid
|
| 7 |
+
from diffusers import PixArtAlphaPipeline
|
| 8 |
|
| 9 |
+
# Check for CUDA availability
|
| 10 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 11 |
|
| 12 |
+
# Load the PixArtAlphaPipeline
|
| 13 |
+
if torch.cuda.is_available():
|
| 14 |
+
pipe = PixArtAlphaPipeline.from_pretrained(
|
| 15 |
+
"PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
|
| 16 |
+
torch_dtype=torch.float16,
|
| 17 |
+
use_safetensors=True,
|
| 18 |
+
)
|
| 19 |
+
pipe.to(device)
|
| 20 |
+
st.write("Model loaded successfully!")
|
| 21 |
+
else:
|
| 22 |
+
st.error("This demo requires GPU support, which is not available on this system.")
|
| 23 |
+
|
| 24 |
+
# Constants
|
| 25 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 26 |
+
|
| 27 |
+
# Function to save image and return the path
|
| 28 |
+
def save_image(img):
|
| 29 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
| 30 |
+
img.save(unique_name)
|
| 31 |
+
return unique_name
|
| 32 |
+
|
| 33 |
+
# Main function for image generation
|
| 34 |
+
def generate_image(prompt, style, use_negative_prompt, negative_prompt, seed, width, height, inference_steps):
|
| 35 |
+
generator = torch.Generator().manual_seed(seed)
|
| 36 |
|
| 37 |
+
# Apply the selected style
|
| 38 |
+
if style == "(No style)":
|
| 39 |
+
prompt_text = prompt
|
| 40 |
+
else:
|
| 41 |
+
prompt_text, _ = apply_style(style, prompt, negative_prompt)
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Generate the image
|
|
|
|
|
|
|
| 44 |
images = pipe(
|
| 45 |
+
prompt=prompt_text,
|
| 46 |
+
negative_prompt=None,
|
| 47 |
+
width=width,
|
| 48 |
+
height=height,
|
| 49 |
+
guidance_scale=0,
|
| 50 |
+
num_inference_steps=inference_steps,
|
| 51 |
+
generator=generator,
|
| 52 |
num_images_per_prompt=1,
|
| 53 |
use_resolution_binning=True,
|
| 54 |
output_type="pil",
|
| 55 |
).images
|
| 56 |
|
| 57 |
+
# Save the image and display
|
| 58 |
+
if images:
|
| 59 |
+
img_path = save_image(images[0])
|
| 60 |
+
img = Image.open(img_path)
|
| 61 |
+
st.image(img, caption="Generated Image", use_column_width=True)
|
| 62 |
+
st.success("Image generated successfully!")
|
| 63 |
+
else:
|
| 64 |
+
st.error("Failed to generate image. Please try again.")
|
| 65 |
|
| 66 |
+
# Helper function to apply selected style
|
| 67 |
+
def apply_style(style_name, positive, negative):
|
| 68 |
+
# Define styles dictionary (similar to your Gradio code)
|
| 69 |
+
styles = {
|
| 70 |
+
"(No style)": (positive, ""),
|
| 71 |
+
"Cinematic": ("cinematic still " + positive, "anime, cartoon, ..."),
|
| 72 |
+
"Realistic": ("Photorealistic " + positive, "drawing, painting, ..."),
|
| 73 |
+
# Add other styles here...
|
| 74 |
+
}
|
| 75 |
+
return styles.get(style_name, styles["(No style)"])
|
| 76 |
+
|
| 77 |
+
# Streamlit UI
|
| 78 |
+
st.title("Instant Image Generator")
|
| 79 |
|
| 80 |
+
prompt = st.text_input("Prompt", "Enter your prompt")
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
style_names = ["(No style)", "Cinematic", "Realistic"] # Add other styles here...
|
| 83 |
+
style = st.selectbox("Image Style", style_names)
|
| 84 |
|
| 85 |
+
use_negative_prompt = st.checkbox("Use negative prompt")
|
| 86 |
+
negative_prompt = st.text_input("Negative prompt", "")
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
seed = st.slider("Seed", 0, MAX_SEED, 0)
|
| 89 |
+
width = st.slider("Width", 256, 4192, 1024, step=32)
|
| 90 |
+
height = st.slider("Height", 256, 4192, 1024, step=32)
|
| 91 |
+
inference_steps = st.slider("Steps", 4, 20, 4)
|
| 92 |
|
| 93 |
+
if st.button("Generate Image"):
|
| 94 |
+
generate_image(prompt, style, use_negative_prompt, negative_prompt, seed, width, height, inference_steps)
|