Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -50,11 +50,13 @@ def get_conversational_chain():
|
|
50 |
return chain
|
51 |
|
52 |
def user_input(user_question, api_key):
|
|
|
53 |
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
54 |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
55 |
docs = new_db.similarity_search(user_question)
|
56 |
chain = get_conversational_chain()
|
57 |
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
|
|
58 |
st.write("Replies:")
|
59 |
if isinstance(response["output_text"], str):
|
60 |
response_list = [response["output_text"]]
|
@@ -89,12 +91,16 @@ def main():
|
|
89 |
text_chunks = get_text_chunks(raw_text)
|
90 |
get_vector_store(text_chunks, api_key)
|
91 |
st.success("Processing Complete")
|
|
|
92 |
if pdf_docs and st.success("Processing Complete"):
|
93 |
with col1:
|
94 |
raw_text = get_pdf_text(pdf_docs)
|
95 |
user_question = st.text_input("Ask a question from the Docs")
|
96 |
if user_question:
|
97 |
user_input(user_question, api_key)
|
|
|
|
|
|
|
98 |
|
99 |
# Display extracted text and handle user interaction if raw_text is not None
|
100 |
if raw_text is not None:
|
|
|
50 |
return chain
|
51 |
|
52 |
def user_input(user_question, api_key):
|
53 |
+
st.spinner("Processing...")
|
54 |
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=api_key, model_name="sentence-transformers/all-MiniLM-l6-v2")
|
55 |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
56 |
docs = new_db.similarity_search(user_question)
|
57 |
chain = get_conversational_chain()
|
58 |
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
59 |
+
st.success("Processing Complete")
|
60 |
st.write("Replies:")
|
61 |
if isinstance(response["output_text"], str):
|
62 |
response_list = [response["output_text"]]
|
|
|
91 |
text_chunks = get_text_chunks(raw_text)
|
92 |
get_vector_store(text_chunks, api_key)
|
93 |
st.success("Processing Complete")
|
94 |
+
|
95 |
if pdf_docs and st.success("Processing Complete"):
|
96 |
with col1:
|
97 |
raw_text = get_pdf_text(pdf_docs)
|
98 |
user_question = st.text_input("Ask a question from the Docs")
|
99 |
if user_question:
|
100 |
user_input(user_question, api_key)
|
101 |
+
else:
|
102 |
+
with col1:
|
103 |
+
st.write("Please upload a document first to ask questions.")
|
104 |
|
105 |
# Display extracted text and handle user interaction if raw_text is not None
|
106 |
if raw_text is not None:
|