from __future__ import annotations import streamlit as st from langchain.prompts import PromptTemplate from langchain.chat_models import ChatOpenAI from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from typing import Any import openai import os # OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] prompt_file = "prompt_template.txt" class ProductDescGen(LLMChain): """LLM Chain specifically for generating multi-paragraph rich text product description using emojis.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: str, **kwargs: Any ) -> ProductDescGen: """Load ProductDescGen Chain from LLM.""" return cls(llm=llm, prompt=prompt, **kwargs) def product_desc_generator(product_name, keywords, openai_api_key): with open(prompt_file, "r") as file: prompt_template = file.read() PROMPT = PromptTemplate( input_variables=["product_name", "keywords"], template=prompt_template ) llm = ChatOpenAI( model_name="gpt-3.5-turbo", temperature=0.7, # openai_api_key=OPENAI_API_KEY, openai_api_key=openai_api_key, ) ProductDescGen_chain = ProductDescGen.from_llm(llm=llm, prompt=PROMPT) ProductDescGen_query = ProductDescGen_chain.apply_and_parse( [{"product_name": product_name, "keywords": keywords}] ) return ProductDescGen_query[0]["text"] def main(): st.title("Product Description Generator") st.write( "Generate multi-paragraph rich text product descriptions for your products instantly!" " Provide the product name and keywords related to the product." ) openai_api_key = st.text_input("OpenAI API Key", "your_openai_api_key_here") product_name = st.text_input("Product Name", "Nike Shoes") keywords = st.text_input( "Keywords (separated by commas)", "black shoes, leather shoes for men, water resistant" ) if st.button("Generate Description"): if openai_api_key: description = product_desc_generator(product_name, keywords, openai_api_key) st.subheader("Product Description:") st.text(description) else: st.warning("Please provide your OpenAI API Key.") if __name__ == "__main__": main()