HvR commited on
Commit
8335c52
·
verified ·
1 Parent(s): 696d3b6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -36
app.py CHANGED
@@ -1,4 +1,3 @@
1
-
2
  import cv2 as cv
3
  import numpy as np
4
  import gradio as gr
@@ -7,7 +6,7 @@ from huggingface_hub import hf_hub_download
7
 
8
  # Download ONNX model from Hugging Face
9
  model_path = hf_hub_download(repo_id="opencv/image_classification_mobilenet", filename="image_classification_mobilenetv1_2022apr.onnx")
10
- top_k = 10 # Increased to support variable top_n
11
  backend_id = cv.dnn.DNN_BACKEND_OPENCV
12
  target_id = cv.dnn.DNN_TARGET_CPU
13
 
@@ -18,42 +17,58 @@ def add_hsv_noise(image, hue_noise=0, saturation_noise=0, value_noise=0):
18
  """Add HSV noise to an image"""
19
  if image is None:
20
  return None
21
-
22
  # Convert BGR to HSV (OpenCV uses BGR by default)
23
  hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV).astype(np.float32)
24
-
25
  # Add noise to each channel
26
  hsv[:, :, 0] = np.clip(hsv[:, :, 0] + hue_noise, 0, 179) # Hue: 0-179
27
  hsv[:, :, 1] = np.clip(hsv[:, :, 1] + saturation_noise, 0, 255) # Saturation: 0-255
28
  hsv[:, :, 2] = np.clip(hsv[:, :, 2] + value_noise, 0, 255) # Value: 0-255
29
-
30
  # Convert back to BGR
31
  bgr = cv.cvtColor(hsv.astype(np.uint8), cv.COLOR_HSV2BGR)
32
-
33
  return bgr
34
 
35
  def classify_image_with_noise(input_image, top_n, hue_noise, saturation_noise, value_noise):
36
- """Classify image with HSV noise applied"""
37
  if input_image is None:
38
  return None, "Please upload an image first."
39
-
40
  # Apply HSV noise
41
  noisy_image = add_hsv_noise(input_image, hue_noise, saturation_noise, value_noise)
42
-
43
  # Resize and crop as in original code
44
  image = cv.resize(noisy_image, (256, 256))
45
  image = image[16:240, 16:240, :]
46
-
47
- # Update model's topK for this inference
48
- model.topK = top_n
49
- result = model.infer(image)
50
-
51
- # Format results with probabilities if available
52
- result_str = "\n".join(f"{i+1}. {label}" for i, label in enumerate(result[:top_n]))
53
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  # Convert BGR to RGB for display in Gradio
55
  display_image = cv.cvtColor(noisy_image, cv.COLOR_BGR2RGB)
56
-
57
  return display_image, result_str
58
 
59
  def clear_output_on_change(img):
@@ -73,42 +88,32 @@ with gr.Blocks(css='''.example * {
73
 
74
  with gr.Row():
75
  with gr.Column():
76
- # Input controls
77
  image_input = gr.Image(type="numpy", label="Upload Image")
78
-
79
  gr.Markdown("### Classification Settings")
80
  top_n = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Top N Classes")
81
-
82
  gr.Markdown("### HSV Noise Controls")
83
  hue_noise = gr.Slider(minimum=-50, maximum=50, value=0, step=1, label="Hue Noise (-50 to 50)")
84
  saturation_noise = gr.Slider(minimum=-100, maximum=100, value=0, step=5, label="Saturation Noise (-100 to 100)")
85
  value_noise = gr.Slider(minimum=-100, maximum=100, value=0, step=5, label="Value/Brightness Noise (-100 to 100)")
86
-
87
  with gr.Column():
88
- # Output displays
89
  noisy_image_output = gr.Image(label="Image with Noise Applied")
90
- output_box = gr.Textbox(label="Top Predictions", lines=10, max_lines=15)
91
 
92
- # Clear outputs when new image is uploaded
93
  image_input.change(fn=clear_output_on_change, inputs=image_input, outputs=[output_box, noisy_image_output])
94
 
95
  with gr.Row():
96
  submit_btn = gr.Button("Submit", variant="primary")
97
  clear_btn = gr.Button("Clear")
98
 
99
- # Set up real-time updates for sliders
100
  inputs = [image_input, top_n, hue_noise, saturation_noise, value_noise]
101
  outputs = [noisy_image_output, output_box]
102
-
103
- # Update predictions when sliders change (real-time)
104
  for slider in [top_n, hue_noise, saturation_noise, value_noise]:
105
- slider.change(
106
- fn=classify_image_with_noise,
107
- inputs=inputs,
108
- outputs=outputs
109
- )
110
-
111
- # Manual submit button
112
  submit_btn.click(fn=classify_image_with_noise, inputs=inputs, outputs=outputs)
113
  clear_btn.click(fn=clear_all, outputs=[image_input, noisy_image_output, output_box])
114
 
@@ -123,4 +128,4 @@ with gr.Blocks(css='''.example * {
123
  )
124
 
125
  if __name__ == "__main__":
126
- demo.launch()
 
 
1
  import cv2 as cv
2
  import numpy as np
3
  import gradio as gr
 
6
 
7
  # Download ONNX model from Hugging Face
8
  model_path = hf_hub_download(repo_id="opencv/image_classification_mobilenet", filename="image_classification_mobilenetv1_2022apr.onnx")
9
+ top_k = 10
10
  backend_id = cv.dnn.DNN_BACKEND_OPENCV
11
  target_id = cv.dnn.DNN_TARGET_CPU
12
 
 
17
  """Add HSV noise to an image"""
18
  if image is None:
19
  return None
20
+
21
  # Convert BGR to HSV (OpenCV uses BGR by default)
22
  hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV).astype(np.float32)
23
+
24
  # Add noise to each channel
25
  hsv[:, :, 0] = np.clip(hsv[:, :, 0] + hue_noise, 0, 179) # Hue: 0-179
26
  hsv[:, :, 1] = np.clip(hsv[:, :, 1] + saturation_noise, 0, 255) # Saturation: 0-255
27
  hsv[:, :, 2] = np.clip(hsv[:, :, 2] + value_noise, 0, 255) # Value: 0-255
28
+
29
  # Convert back to BGR
30
  bgr = cv.cvtColor(hsv.astype(np.uint8), cv.COLOR_HSV2BGR)
31
+
32
  return bgr
33
 
34
  def classify_image_with_noise(input_image, top_n, hue_noise, saturation_noise, value_noise):
35
+ """Classify image with HSV noise applied and return exact confidence scores"""
36
  if input_image is None:
37
  return None, "Please upload an image first."
38
+
39
  # Apply HSV noise
40
  noisy_image = add_hsv_noise(input_image, hue_noise, saturation_noise, value_noise)
41
+
42
  # Resize and crop as in original code
43
  image = cv.resize(noisy_image, (256, 256))
44
  image = image[16:240, 16:240, :]
45
+
46
+ # Preprocess manually to get raw scores
47
+ input_blob = model._preprocess(image)
48
+
49
+ # Forward pass
50
+ model.model.setInput(input_blob, model.input_names)
51
+ output_blob = model.model.forward(model.output_names)
52
+
53
+ # Get raw probabilities (apply softmax if needed)
54
+ raw_scores = output_blob[0] # First batch
55
+ probabilities = np.exp(raw_scores) / np.sum(np.exp(raw_scores)) # Softmax
56
+
57
+ # Get top N indices and their scores
58
+ top_indices = np.argsort(probabilities)[::-1][:top_n]
59
+
60
+ # Format results with exact confidence scores
61
+ result_lines = []
62
+ for i, idx in enumerate(top_indices):
63
+ label = model._labels[idx]
64
+ confidence = probabilities[idx]
65
+ result_lines.append(f"{i+1}. {label}: {confidence:.6f} ({confidence*100:.4f}%)")
66
+
67
+ result_str = "\n".join(result_lines)
68
+
69
  # Convert BGR to RGB for display in Gradio
70
  display_image = cv.cvtColor(noisy_image, cv.COLOR_BGR2RGB)
71
+
72
  return display_image, result_str
73
 
74
  def clear_output_on_change(img):
 
88
 
89
  with gr.Row():
90
  with gr.Column():
 
91
  image_input = gr.Image(type="numpy", label="Upload Image")
92
+
93
  gr.Markdown("### Classification Settings")
94
  top_n = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Top N Classes")
95
+
96
  gr.Markdown("### HSV Noise Controls")
97
  hue_noise = gr.Slider(minimum=-50, maximum=50, value=0, step=1, label="Hue Noise (-50 to 50)")
98
  saturation_noise = gr.Slider(minimum=-100, maximum=100, value=0, step=5, label="Saturation Noise (-100 to 100)")
99
  value_noise = gr.Slider(minimum=-100, maximum=100, value=0, step=5, label="Value/Brightness Noise (-100 to 100)")
100
+
101
  with gr.Column():
 
102
  noisy_image_output = gr.Image(label="Image with Noise Applied")
103
+ output_box = gr.Textbox(label="Top Predictions with Confidence Scores", lines=10, max_lines=15)
104
 
 
105
  image_input.change(fn=clear_output_on_change, inputs=image_input, outputs=[output_box, noisy_image_output])
106
 
107
  with gr.Row():
108
  submit_btn = gr.Button("Submit", variant="primary")
109
  clear_btn = gr.Button("Clear")
110
 
 
111
  inputs = [image_input, top_n, hue_noise, saturation_noise, value_noise]
112
  outputs = [noisy_image_output, output_box]
113
+
 
114
  for slider in [top_n, hue_noise, saturation_noise, value_noise]:
115
+ slider.change(fn=classify_image_with_noise, inputs=inputs, outputs=outputs)
116
+
 
 
 
 
 
117
  submit_btn.click(fn=classify_image_with_noise, inputs=inputs, outputs=outputs)
118
  clear_btn.click(fn=clear_all, outputs=[image_input, noisy_image_output, output_box])
119
 
 
128
  )
129
 
130
  if __name__ == "__main__":
131
+ demo.launch()