import cv2 as cv import numpy as np import gradio as gr from mobilenet import MobileNet from huggingface_hub import hf_hub_download # Download ONNX model from Hugging Face model_path = hf_hub_download(repo_id="opencv/image_classification_mobilenet", filename="image_classification_mobilenetv1_2022apr.onnx") top_k = 10 backend_id = cv.dnn.DNN_BACKEND_OPENCV target_id = cv.dnn.DNN_TARGET_CPU # Load MobileNet model model = MobileNet(modelPath=model_path, topK=top_k, backendId=backend_id, targetId=target_id) def add_hsv_noise(image, hue_noise=0, saturation_noise=0, value_noise=0): """Add HSV noise to an image""" if image is None: return None # Convert BGR to HSV (OpenCV uses BGR by default) hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV).astype(np.float32) # Add noise to each channel hsv[:, :, 0] = np.clip(hsv[:, :, 0] + hue_noise, 0, 179) # Hue: 0-179 hsv[:, :, 1] = np.clip(hsv[:, :, 1] + saturation_noise, 0, 255) # Saturation: 0-255 hsv[:, :, 2] = np.clip(hsv[:, :, 2] + value_noise, 0, 255) # Value: 0-255 # Convert back to BGR bgr = cv.cvtColor(hsv.astype(np.uint8), cv.COLOR_HSV2BGR) return bgr def classify_image_with_noise(input_image, top_n, hue_noise, saturation_noise, value_noise): """Classify image with HSV noise applied and return exact confidence scores""" if input_image is None: return None, "Please upload an image first." # Apply HSV noise noisy_image = add_hsv_noise(input_image, hue_noise, saturation_noise, value_noise) # Resize and crop as in original code image = cv.resize(noisy_image, (256, 256)) image = image[16:240, 16:240, :] # Preprocess manually to get raw scores input_blob = model._preprocess(image) # Forward pass model.model.setInput(input_blob, model.input_names) output_blob = model.model.forward(model.output_names) # Get raw probabilities (apply softmax if needed) raw_scores = output_blob[0] # First batch probabilities = np.exp(raw_scores) / np.sum(np.exp(raw_scores)) # Softmax # Get top N indices and their scores top_indices = np.argsort(probabilities)[::-1][:top_n] # Format results with exact confidence scores result_lines = [] for i, idx in enumerate(top_indices): label = model._labels[idx] confidence = probabilities[idx] result_lines.append(f"{i+1}. {label}: {confidence:.6f} ({confidence*100:.4f}%)") result_str = "\n".join(result_lines) # Convert BGR to RGB for display in Gradio display_image = cv.cvtColor(noisy_image, cv.COLOR_BGR2RGB) return display_image, result_str def clear_output_on_change(img): return gr.update(value=""), None def clear_all(): return None, None, "" with gr.Blocks(css='''.example * { font-style: italic; font-size: 18px !important; color: #0ea5e9 !important; }''') as demo: gr.Markdown("### Image Classification with MobileNet + HSV Noise Analysis") gr.Markdown("Upload an image and adjust HSV noise sliders to see how it affects MobileNet predictions in real-time.") with gr.Row(): with gr.Column(): image_input = gr.Image(type="numpy", label="Upload Image") gr.Markdown("### Classification Settings") top_n = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Top N Classes") gr.Markdown("### HSV Noise Controls") hue_noise = gr.Slider(minimum=-50, maximum=50, value=0, step=1, label="Hue Noise (-50 to 50)") saturation_noise = gr.Slider(minimum=-100, maximum=100, value=0, step=5, label="Saturation Noise (-100 to 100)") value_noise = gr.Slider(minimum=-100, maximum=100, value=0, step=5, label="Value/Brightness Noise (-100 to 100)") with gr.Column(): noisy_image_output = gr.Image(label="Image with Noise Applied") output_box = gr.Textbox(label="Top Predictions with Confidence Scores", lines=10, max_lines=15) image_input.change(fn=clear_output_on_change, inputs=image_input, outputs=[output_box, noisy_image_output]) with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") clear_btn = gr.Button("Clear") inputs = [image_input, top_n, hue_noise, saturation_noise, value_noise] outputs = [noisy_image_output, output_box] for slider in [top_n, hue_noise, saturation_noise, value_noise]: slider.change(fn=classify_image_with_noise, inputs=inputs, outputs=outputs) submit_btn.click(fn=classify_image_with_noise, inputs=inputs, outputs=outputs) clear_btn.click(fn=clear_all, outputs=[image_input, noisy_image_output, output_box]) gr.Markdown("Click on any example to try it.", elem_classes=["example"]) gr.Examples( examples=[ ["examples/squirrel_cls.jpg"], ["examples/baboon.jpg"] ], inputs=image_input ) if __name__ == "__main__": demo.launch()