|  | """ | 
					
						
						|  | ein notation: | 
					
						
						|  | b - batch | 
					
						
						|  | n - sequence | 
					
						
						|  | nt - text sequence | 
					
						
						|  | nw - raw wave length | 
					
						
						|  | d - dimension | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | from __future__ import annotations | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  |  | 
					
						
						|  | from x_transformers.x_transformers import RotaryEmbedding | 
					
						
						|  |  | 
					
						
						|  | from f5_tts.model.modules import ( | 
					
						
						|  | TimestepEmbedding, | 
					
						
						|  | ConvPositionEmbedding, | 
					
						
						|  | MMDiTBlock, | 
					
						
						|  | AdaLayerNormZero_Final, | 
					
						
						|  | precompute_freqs_cis, | 
					
						
						|  | get_pos_embed_indices, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TextEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, out_dim, text_num_embeds): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) | 
					
						
						|  |  | 
					
						
						|  | self.precompute_max_pos = 1024 | 
					
						
						|  | self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: | 
					
						
						|  | text = text + 1 | 
					
						
						|  | if drop_text: | 
					
						
						|  | text = torch.zeros_like(text) | 
					
						
						|  | text = self.text_embed(text) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_start = torch.zeros((text.shape[0],), dtype=torch.long) | 
					
						
						|  | batch_text_len = text.shape[1] | 
					
						
						|  | pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos) | 
					
						
						|  | text_pos_embed = self.freqs_cis[pos_idx] | 
					
						
						|  |  | 
					
						
						|  | text = text + text_pos_embed | 
					
						
						|  |  | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AudioEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, in_dim, out_dim): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.linear = nn.Linear(2 * in_dim, out_dim) | 
					
						
						|  | self.conv_pos_embed = ConvPositionEmbedding(out_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False): | 
					
						
						|  | if drop_audio_cond: | 
					
						
						|  | cond = torch.zeros_like(cond) | 
					
						
						|  | x = torch.cat((x, cond), dim=-1) | 
					
						
						|  | x = self.linear(x) | 
					
						
						|  | x = self.conv_pos_embed(x) + x | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MMDiT(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | *, | 
					
						
						|  | dim, | 
					
						
						|  | depth=8, | 
					
						
						|  | heads=8, | 
					
						
						|  | dim_head=64, | 
					
						
						|  | dropout=0.1, | 
					
						
						|  | ff_mult=4, | 
					
						
						|  | text_num_embeds=256, | 
					
						
						|  | mel_dim=100, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.time_embed = TimestepEmbedding(dim) | 
					
						
						|  | self.text_embed = TextEmbedding(dim, text_num_embeds) | 
					
						
						|  | self.audio_embed = AudioEmbedding(mel_dim, dim) | 
					
						
						|  |  | 
					
						
						|  | self.rotary_embed = RotaryEmbedding(dim_head) | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.depth = depth | 
					
						
						|  |  | 
					
						
						|  | self.transformer_blocks = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | MMDiTBlock( | 
					
						
						|  | dim=dim, | 
					
						
						|  | heads=heads, | 
					
						
						|  | dim_head=dim_head, | 
					
						
						|  | dropout=dropout, | 
					
						
						|  | ff_mult=ff_mult, | 
					
						
						|  | context_pre_only=i == depth - 1, | 
					
						
						|  | ) | 
					
						
						|  | for i in range(depth) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | self.norm_out = AdaLayerNormZero_Final(dim) | 
					
						
						|  | self.proj_out = nn.Linear(dim, mel_dim) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | x: float["b n d"], | 
					
						
						|  | cond: float["b n d"], | 
					
						
						|  | text: int["b nt"], | 
					
						
						|  | time: float["b"] | float[""], | 
					
						
						|  | drop_audio_cond, | 
					
						
						|  | drop_text, | 
					
						
						|  | mask: bool["b n"] | None = None, | 
					
						
						|  | ): | 
					
						
						|  | batch = x.shape[0] | 
					
						
						|  | if time.ndim == 0: | 
					
						
						|  | time = time.repeat(batch) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t = self.time_embed(time) | 
					
						
						|  | c = self.text_embed(text, drop_text=drop_text) | 
					
						
						|  | x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond) | 
					
						
						|  |  | 
					
						
						|  | seq_len = x.shape[1] | 
					
						
						|  | text_len = text.shape[1] | 
					
						
						|  | rope_audio = self.rotary_embed.forward_from_seq_len(seq_len) | 
					
						
						|  | rope_text = self.rotary_embed.forward_from_seq_len(text_len) | 
					
						
						|  |  | 
					
						
						|  | for block in self.transformer_blocks: | 
					
						
						|  | c, x = block(x, c, t, mask=mask, rope=rope_audio, c_rope=rope_text) | 
					
						
						|  |  | 
					
						
						|  | x = self.norm_out(x, t) | 
					
						
						|  | output = self.proj_out(x) | 
					
						
						|  |  | 
					
						
						|  | return output | 
					
						
						|  |  |