Spaces:
Paused
Paused
| # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import mediapipe as mp | |
| from soundimage.utils.util import read_video, gather_video_paths_recursively | |
| import os | |
| import tqdm | |
| from multiprocessing import Pool | |
| class FaceDetector: | |
| def __init__(self): | |
| self.face_detection = mp.solutions.face_detection.FaceDetection( | |
| model_selection=0, min_detection_confidence=0.5 | |
| ) | |
| def detect_face(self, image): | |
| # Process the image and detect faces. | |
| results = self.face_detection.process(image) | |
| if not results.detections: # Face not detected | |
| return False | |
| if len(results.detections) != 1: | |
| return False | |
| return True | |
| def detect_video(self, video_path): | |
| try: | |
| video_frames = read_video(video_path, change_fps=False) | |
| except Exception as e: | |
| print(f"Exception: {e} - {video_path}") | |
| return False | |
| if len(video_frames) == 0: | |
| return False | |
| for frame in video_frames: | |
| if not self.detect_face(frame): | |
| return False | |
| return True | |
| def close(self): | |
| self.face_detection.close() | |
| def remove_incorrect_affined(video_path): | |
| if not os.path.isfile(video_path): | |
| return | |
| face_detector = FaceDetector() | |
| has_face = face_detector.detect_video(video_path) | |
| if not has_face: | |
| os.remove(video_path) | |
| print(f"Removed: {video_path}") | |
| face_detector.close() | |
| def remove_incorrect_affined_multiprocessing(input_dir, num_workers): | |
| video_paths = gather_video_paths_recursively(input_dir) | |
| print(f"Total videos: {len(video_paths)}") | |
| print(f"Removing incorrect affined videos in {input_dir} ...") | |
| with Pool(num_workers) as pool: | |
| for _ in tqdm.tqdm(pool.imap_unordered(remove_incorrect_affined, video_paths), total=len(video_paths)): | |
| pass | |
| if __name__ == "__main__": | |
| input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/multilingual_dcc/high_visual_quality" | |
| num_workers = 50 | |
| remove_incorrect_affined_multiprocessing(input_dir, num_workers) | |