Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,012 Bytes
b09e573 66c8ea4 b09e573 66c8ea4 b09e573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
from spandrel import ModelLoader
import torch
from pathlib import Path
from PIL import Image
import gradio as App
import numpy as np
import subprocess
import logging
import spaces
import time
import os
import gc
import io
import cv2
from gradio import themes
from rich.console import Console
from rich.logging import RichHandler
# ============================== #
# Core Settings #
# ============================== #
Theme = themes.Citrus(primary_hue='blue', radius_size=themes.sizes.radius_xxl)
ModelDir = Path('./Models')
TempDir = Path('./Temp')
os.environ['GRADIO_TEMP_DIR'] = str(TempDir)
ModelFileType = '.pth'
# ============================== #
# Enhanced Logging #
# ============================== #
logging.basicConfig(level=logging.INFO, format='%(message)s', datefmt='[%X]',
handlers=[RichHandler(console=Console(), rich_tracebacks=True)])
Logger = logging.getLogger('Video2x')
logging.getLogger('httpx').setLevel(logging.WARNING)
# ============================== #
# Device Configuration #
# ============================== #
@spaces.GPU
def GetDeviceName():
Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
Logger.info(f'βοΈ Using device: {Device}')
return Device
Device = GetDeviceName()
# ============================== #
# Optimized Functions #
# ============================== #
def FormatTimeEstimate(Seconds):
Hours = int(Seconds // 3600)
Minutes = int((Seconds % 3600) // 60)
Seconds = int(Seconds % 60)
if Hours > 0:
return f'{Hours}h {Minutes}m {Seconds}s'
elif Minutes > 0:
return f'{Minutes}m {Seconds}s'
else:
return f'{Seconds}s'
def ListModels():
Models = sorted([File.name for File in ModelDir.glob('*' + ModelFileType) if File.is_file()])
Logger.info(f'π Found {len(Models)} Models In Directory')
return Models
def LoadModel(ModelName):
if Device.type == 'cuda':
torch.cuda.empty_cache()
Logger.info(f'π Loading model: {ModelName} onto {Device}')
Model = ModelLoader().load_from_file(ModelDir / (ModelName + ModelFileType)).to(Device).eval() # Use .to(Device)
Logger.info('β
Model Loaded Successfully')
return Model
@spaces.GPU
def ProcessSingleFrame(OriginalImage, Model, TileGridSize):
if TileGridSize > 1:
Logger.info(f'π§© Processing With Tile Grid {TileGridSize}x{TileGridSize}')
Width, Height = OriginalImage.size
TileWidth, TileHeight = Width // TileGridSize, Height // TileGridSize
UpscaledTilesGrid = []
for Row in range(TileGridSize):
CurrentRowTiles = []
for Col in range(TileGridSize):
Tile = OriginalImage.crop((Col * TileWidth, Row * TileHeight,
(Col + 1) * TileWidth, (Row + 1) * TileHeight))
TileTensor = torch.from_numpy(np.array(Tile)).permute(2, 0, 1).unsqueeze(0).float().to(Device) / 255.0
with torch.no_grad():
UpscaledTileTensor = Model(TileTensor)
UpscaledTileNumpy = UpscaledTileTensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
CurrentRowTiles.append(Image.fromarray(np.uint8(UpscaledTileNumpy.clip(0.0, 1.0) * 255.0), mode='RGB'))
del TileTensor, UpscaledTileTensor, UpscaledTileNumpy
UpscaledTilesGrid.append(CurrentRowTiles)
FirstTileWidth, FirstTileHeight = UpscaledTilesGrid[0][0].size
UpscaledImage = Image.new('RGB', (FirstTileWidth * TileGridSize, FirstTileHeight * TileGridSize))
for Row in range(TileGridSize):
for Col in range(TileGridSize):
UpscaledImage.paste(UpscaledTilesGrid[Row][Col], (Col * FirstTileWidth, Row * FirstTileHeight))
else:
TorchImage = torch.from_numpy(np.array(OriginalImage)).permute(2, 0, 1).unsqueeze(0).float().to(Device) / 255.0
with torch.no_grad():
ResultTensor = Model(TorchImage)
ResultNumpy = ResultTensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
UpscaledImage = Image.fromarray(np.uint8(ResultNumpy.clip(0.0, 1.0) * 255.0), mode='RGB')
del TorchImage, ResultTensor, ResultNumpy
return UpscaledImage
@spaces.GPU
def Process(VideoInputPath, ModelName, FrameRateValue, TileGridSize, FileType, Progress=App.Progress()):
# First yield should match the order of outputs in the click function
yield None, App.update(interactive=False, value=None)
if not VideoInputPath or not ModelName or not FileType:
Logger.error('β Missing Inputs!')
return None, None
VideoPath = Path(VideoInputPath)
OutputVideoPath = VideoPath.parent / f'{VideoPath.stem}_{Path(ModelName).stem}{"_Tiled" + str(TileGridSize) if TileGridSize > 1 else ""}{FileType}'
# Load model
Progress(0.0, 'π Loading Model')
Model = LoadModel(ModelName)
# Extract video info
Logger.info(f'π¬ Extracting Video Information From {VideoPath.name}')
VideoCapture = cv2.VideoCapture(str(VideoPath))
FrameCount = int(VideoCapture.get(cv2.CAP_PROP_FRAME_COUNT))
if not FrameRateValue:
FrameRateValue = VideoCapture.get(cv2.CAP_PROP_FPS)
Logger.info(f'ποΈ Processing {FrameCount} Frames At {FrameRateValue} FPS')
# In-memory frames processing
FrameBuffer = []
AllFrames = []
# Time tracking variables
StartTime = time.time()
FrameProcessingTime = None
for FrameIndex in range(FrameCount):
FrameStartTime = time.time()
Success, Frame = VideoCapture.read()
if not Success:
Logger.warning(f'β οΈ Failed To Read Frame {FrameIndex}')
continue
# Convert from BGR to RGB
OriginalImage = Image.fromarray(cv2.cvtColor(Frame, cv2.COLOR_BGR2RGB))
UpscaledImage = ProcessSingleFrame(OriginalImage, Model, TileGridSize)
# Store for preview
ResizedOriginalImage = OriginalImage.resize(UpscaledImage.size, Image.Resampling.LANCZOS)
AllFrames.append((ResizedOriginalImage, UpscaledImage.copy()))
# Save to buffer for video output
ImageBytes = io.BytesIO()
UpscaledImage.save(ImageBytes, format='PNG')
FrameBuffer.append(ImageBytes.getvalue())
# Calculate time estimates
CurrentFrameTime = time.time() - FrameStartTime
if FrameIndex == 0:
FrameProcessingTime = CurrentFrameTime
Logger.info(f'β±οΈ First Frame Took {FrameProcessingTime:.2f}s To Process')
# Calculate remaining time based on average processing time so far
ElapsedTime = time.time() - StartTime
AverageTimePerFrame = ElapsedTime / (FrameIndex + 1)
RemainingFrames = FrameCount - (FrameIndex + 1)
EstimatedRemainingTime = RemainingFrames * AverageTimePerFrame
# Format time estimates for display
RemainingTimeFormatted = FormatTimeEstimate(EstimatedRemainingTime)
Progress(
(FrameIndex + 1) / FrameCount,
f'π Frame {FrameIndex+1}/{FrameCount} | ETA: {RemainingTimeFormatted}'
)
del OriginalImage, UpscaledImage, ImageBytes
gc.collect()
VideoCapture.release()
# Write frames to temporary files for ffmpeg
Logger.info('πΎ Preparing Frames For Video Encoding')
os.makedirs(TempDir, exist_ok=True)
for Index, FrameData in enumerate(FrameBuffer):
with open(f'{TempDir}/Frame_{Index:06d}.png', 'wb') as f:
f.write(FrameData)
# Create video
Progress(1.0, 'π₯ Encoding Video')
Logger.info('π₯ Encoding Final Video')
FfmpegCmd = f'ffmpeg -y -framerate {FrameRateValue} -i "{TempDir}/Frame_%06d.png" -c:v libx264 -pix_fmt yuv420p "{OutputVideoPath}" -hide_banner -loglevel error'
subprocess.run(FfmpegCmd, shell=True, check=True)
# Clean up
for File in Path(TempDir).glob('Frame_*.png'):
File.unlink()
Logger.info(f'π Video Saved To: {OutputVideoPath}')
# Update UI - return values directly in the order specified in the click function
FirstFrame = AllFrames[0] if AllFrames else None
DownloadValue = App.update(interactive=True, value=str(OutputVideoPath))
yield FirstFrame, DownloadValue
# Release resources
del Model, FrameBuffer, AllFrames
Progress(1.0, 'π§Ή Cleaning Up Resources')
gc.collect()
if Device.type == 'cuda':
torch.cuda.empty_cache()
Logger.info('π§Ή CUDA Memory Cleaned Up')
Logger.info('π§Ή Model Unloaded')
Progress(1.0, 'π¦ Done!')
# ============================== #
# Streamlined UI #
# ============================== #
with App.Blocks(title='Video Upscaler', theme=Theme, delete_cache=(60, 600)) as Interface:
App.Markdown('# ποΈ Video Upscaler')
App.Markdown('''
Space created by [Hyphonical](https://huggingface.co/Hyphonical), this space uses several models from [styler00dollar/VSGAN-tensorrt-docker](https://github.com/styler00dollar/VSGAN-tensorrt-docker/releases/tag/models)
You may always request adding more models by opening a [new discussion](https://huggingface.co/spaces/Hyphonical/Video2x/discussions/new). The main program uses spandrel to load the models and ffmpeg to process the video.
You may run out of time using the ZeroGPU, you could clone the space or run it locally for better performance.
''')
with App.Row():
with App.Column(scale=1):
with App.Group():
InputVideo = App.Video(label='Input Video', sources=['upload'], height=300)
ModelList = ListModels()
ModelNames = [Path(Model).stem for Model in ModelList]
InputModel = App.Dropdown(choices=ModelNames, label='Select Model', value=ModelNames[0] if ModelNames else None)
with App.Row():
InputFrameRate = App.Slider(label='Frame Rate', minimum=1, maximum=60, value=23.976, step=0.001)
InputTileGridSize = App.Slider(label='Tile Grid Size', minimum=1, maximum=6, value=1, step=1, show_reset_button=False)
InputFileType = App.Dropdown(choices=['.mp4', '.mkv'], label='Output File Type', value='.mkv', interactive=True)
SubmitButton = App.Button('π Upscale Video')
with App.Column(scale=1, show_progress=True):
OutputSlider = App.ImageSlider(label='Output Preview', value=None, height=300)
DownloadOutput = App.DownloadButton(label='πΎ Download Video', interactive=False)
with App.Accordion(label='π Instructions', open=False):
App.Markdown('''
### How To Use The Video Upscaler
1. **Upload A Video:** Begin by uploading your video file using the 'Input Video' section.
2. **Select A Model:** Choose an appropriate upscaling model from the 'Select Model' dropdown menu.
3. **Adjust Settings (Optional):**
Modify the 'Frame Rate' slider if you want to change the output video's frame rate.
Adjust the 'Tile Grid Size' for memory optimization. Larger models might require a higher grid size, but processing could be slower.
4. **Start Processing:** Click the 'π Upscale Video' button to begin the upscaling process.
5. **Download The Result:** Once the process is complete, download the upscaled video using the 'πΎ Download Video' button.
> Tip: If you get a CUDA out of memory error, try increasing the Tile Grid Size. This will split the image into smaller tiles for processing, which can help reduce memory usage.
''')
SubmitButton.click(fn=Process, inputs=[InputVideo, InputModel, InputFrameRate, InputTileGridSize, InputFileType],
outputs=[OutputSlider, DownloadOutput])
if __name__ == '__main__':
os.makedirs(ModelDir, exist_ok=True)
os.makedirs(TempDir, exist_ok=True)
Logger.info('π Starting Video Upscaler')
Interface.launch(pwa=True) |