Hyphonical commited on
Commit
c914404
·
1 Parent(s): 1a52c98

📦 Add Experimental Region Support, Add SAD Script

Browse files
Files changed (4) hide show
  1. App.py +266 -202
  2. Diff.py +0 -151
  3. Models/1x_Anime1080Fixer_SuperUltraCompact.pth +3 -0
  4. Scripts/SAD.py +120 -0
App.py CHANGED
@@ -1,38 +1,51 @@
1
  from spandrel import ModelLoader
2
  import torch
3
  from pathlib import Path
4
- from PIL import Image
5
  import gradio as App
6
- import numpy as np
7
- import subprocess
8
  import logging
9
  import spaces
10
  import time
11
- import os
12
- import gc
13
- import io
14
  import cv2
 
15
 
16
  from gradio import themes
17
  from rich.console import Console
18
  from rich.logging import RichHandler
19
 
 
 
20
  # ============================== #
21
  # Core Settings #
22
  # ============================== #
23
 
24
- Theme = themes.Citrus(primary_hue='blue', radius_size=themes.sizes.radius_xxl)
 
 
 
 
 
 
25
  ModelDir = Path('./Models')
26
  TempDir = Path('./Temp')
27
  os.environ['GRADIO_TEMP_DIR'] = str(TempDir)
28
  ModelFileType = '.pth'
29
 
30
  # ============================== #
31
- # Enhanced Logging #
32
  # ============================== #
33
 
34
- logging.basicConfig(level=logging.INFO, format='%(message)s', datefmt='[%X]',
35
- handlers=[RichHandler(console=Console(), rich_tracebacks=True)])
 
 
 
 
 
 
 
 
 
 
36
  Logger = logging.getLogger('Video2x')
37
  logging.getLogger('httpx').setLevel(logging.WARNING)
38
 
@@ -43,16 +56,16 @@ logging.getLogger('httpx').setLevel(logging.WARNING)
43
  @spaces.GPU
44
  def GetDeviceName():
45
  Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
46
- Logger.info(f'⚙️ Using device: {Device}')
47
  return Device
48
 
49
  Device = GetDeviceName()
50
 
51
  # ============================== #
52
- # Optimized Functions #
53
  # ============================== #
54
 
55
- def FormatTimeEstimate(Seconds):
56
  Hours = int(Seconds // 3600)
57
  Minutes = int((Seconds % 3600) // 60)
58
  Seconds = int(Seconds % 60)
@@ -64,179 +77,156 @@ def FormatTimeEstimate(Seconds):
64
  else:
65
  return f'{Seconds}s'
66
 
67
- def ListModels():
68
- Models = sorted([File.name for File in ModelDir.glob('*' + ModelFileType) if File.is_file()])
69
- Logger.info(f'📚 Found {len(Models)} Models In Directory')
70
- return Models
71
-
72
- def LoadModel(ModelName):
73
- if Device.type == 'cuda':
74
- torch.cuda.empty_cache()
75
- Logger.info(f'🔄 Loading model: {ModelName} onto {Device}')
76
- Model = ModelLoader().load_from_file(ModelDir / (ModelName + ModelFileType)).to(Device).eval() # Use .to(Device)
77
- Logger.info('✅ Model Loaded Successfully')
78
- return Model
79
-
80
- @spaces.GPU
81
- def ProcessSingleFrame(OriginalImage, Model, TileGridSize):
82
- if TileGridSize > 1:
83
- Logger.info(f'🧩 Processing With Tile Grid {TileGridSize}x{TileGridSize}')
84
- Width, Height = OriginalImage.size
85
- TileWidth, TileHeight = Width // TileGridSize, Height // TileGridSize
86
- UpscaledTilesGrid = []
87
-
88
- for Row in range(TileGridSize):
89
- CurrentRowTiles = []
90
- for Col in range(TileGridSize):
91
- Tile = OriginalImage.crop((Col * TileWidth, Row * TileHeight,
92
- (Col + 1) * TileWidth, (Row + 1) * TileHeight))
93
- TileTensor = torch.from_numpy(np.array(Tile)).permute(2, 0, 1).unsqueeze(0).float().to(Device) / 255.0
94
-
95
- with torch.no_grad():
96
- UpscaledTileTensor = Model(TileTensor)
97
-
98
- UpscaledTileNumpy = UpscaledTileTensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
99
- CurrentRowTiles.append(Image.fromarray(np.uint8(UpscaledTileNumpy.clip(0.0, 1.0) * 255.0), mode='RGB'))
100
- del TileTensor, UpscaledTileTensor, UpscaledTileNumpy
101
- UpscaledTilesGrid.append(CurrentRowTiles)
102
-
103
- FirstTileWidth, FirstTileHeight = UpscaledTilesGrid[0][0].size
104
- UpscaledImage = Image.new('RGB', (FirstTileWidth * TileGridSize, FirstTileHeight * TileGridSize))
105
-
106
- for Row in range(TileGridSize):
107
- for Col in range(TileGridSize):
108
- UpscaledImage.paste(UpscaledTilesGrid[Row][Col], (Col * FirstTileWidth, Row * FirstTileHeight))
109
- else:
110
- TorchImage = torch.from_numpy(np.array(OriginalImage)).permute(2, 0, 1).unsqueeze(0).float().to(Device) / 255.0
111
- with torch.no_grad():
112
- ResultTensor = Model(TorchImage)
113
- ResultNumpy = ResultTensor.squeeze(0).permute(1, 2, 0).cpu().numpy()
114
- UpscaledImage = Image.fromarray(np.uint8(ResultNumpy.clip(0.0, 1.0) * 255.0), mode='RGB')
115
- del TorchImage, ResultTensor, ResultNumpy
116
 
117
- return UpscaledImage
 
 
118
 
119
  @spaces.GPU
120
- def Process(VideoInputPath, ModelName, FrameRateValue, TileGridSize, FileType, Progress=App.Progress()):
121
- # First yield should match the order of outputs in the click function
122
- yield None, App.update(interactive=False, value=None)
123
-
124
- if not VideoInputPath or not ModelName or not FileType:
125
- Logger.error('⛔ Missing Inputs!')
126
- return None, None
127
-
128
- VideoPath = Path(VideoInputPath)
129
- OutputVideoPath = VideoPath.parent / f'{VideoPath.stem}_{Path(ModelName).stem}{"_Tiled" + str(TileGridSize) if TileGridSize > 1 else ""}{FileType}'
130
-
131
- # Load model
132
- Progress(0.0, '🔄 Loading Model')
133
- Model = LoadModel(ModelName)
134
-
135
- # Extract video info
136
- Logger.info(f'🎬 Extracting Video Information From {VideoPath.name}')
137
- VideoCapture = cv2.VideoCapture(str(VideoPath))
138
- FrameCount = int(VideoCapture.get(cv2.CAP_PROP_FRAME_COUNT))
139
-
140
- if not FrameRateValue:
141
- FrameRateValue = VideoCapture.get(cv2.CAP_PROP_FPS)
142
-
143
- Logger.info(f'🎞️ Processing {FrameCount} Frames At {FrameRateValue} FPS')
144
-
145
- # In-memory frames processing
146
- FrameBuffer = []
147
- AllFrames = []
148
-
149
- # Time tracking variables
150
- StartTime = time.time()
151
- FrameProcessingTime = None
152
-
153
- for FrameIndex in range(FrameCount):
154
- FrameStartTime = time.time()
155
-
156
- Success, Frame = VideoCapture.read()
157
- if not Success:
158
- Logger.warning(f'⚠️ Failed To Read Frame {FrameIndex}')
159
- continue
160
 
161
- # Convert from BGR to RGB
162
- OriginalImage = Image.fromarray(cv2.cvtColor(Frame, cv2.COLOR_BGR2RGB))
163
- UpscaledImage = ProcessSingleFrame(OriginalImage, Model, TileGridSize)
164
-
165
- # Store for preview
166
- ResizedOriginalImage = OriginalImage.resize(UpscaledImage.size, Image.Resampling.LANCZOS)
167
- AllFrames.append((ResizedOriginalImage, UpscaledImage.copy()))
168
-
169
- # Save to buffer for video output
170
- ImageBytes = io.BytesIO()
171
- UpscaledImage.save(ImageBytes, format='PNG')
172
- FrameBuffer.append(ImageBytes.getvalue())
173
-
174
- # Calculate time estimates
175
- CurrentFrameTime = time.time() - FrameStartTime
176
-
177
- if FrameIndex == 0:
178
- FrameProcessingTime = CurrentFrameTime
179
- Logger.info(f'⏱️ First Frame Took {FrameProcessingTime:.2f}s To Process')
180
-
181
- # Calculate remaining time based on average processing time so far
182
- ElapsedTime = time.time() - StartTime
183
- AverageTimePerFrame = ElapsedTime / (FrameIndex + 1)
184
- RemainingFrames = FrameCount - (FrameIndex + 1)
185
- EstimatedRemainingTime = RemainingFrames * AverageTimePerFrame
186
-
187
- # Format time estimates for display
188
- RemainingTimeFormatted = FormatTimeEstimate(EstimatedRemainingTime)
189
-
190
- Progress(
191
- (FrameIndex + 1) / FrameCount,
192
- f'🔄 Frame {FrameIndex+1}/{FrameCount} | ETA: {RemainingTimeFormatted}'
193
  )
 
 
194
 
195
- del OriginalImage, UpscaledImage, ImageBytes
196
- gc.collect()
197
-
198
- VideoCapture.release()
199
-
200
- # Write frames to temporary files for ffmpeg
201
- Logger.info('💾 Preparing Frames For Video Encoding')
202
- os.makedirs(TempDir, exist_ok=True)
203
-
204
- for Index, FrameData in enumerate(FrameBuffer):
205
- with open(f'{TempDir}/Frame_{Index:06d}.png', 'wb') as f:
206
- f.write(FrameData)
207
-
208
- # Create video
209
- Progress(1.0, '🎥 Encoding Video')
210
- Logger.info('🎥 Encoding Final Video')
211
- FfmpegCmd = f'ffmpeg -y -framerate {FrameRateValue} -i "{TempDir}/Frame_%06d.png" -c:v libx264 -pix_fmt yuv420p "{OutputVideoPath}" -hide_banner -loglevel error'
212
- subprocess.run(FfmpegCmd, shell=True, check=True)
213
-
214
- # Clean up
215
- for File in Path(TempDir).glob('Frame_*.png'):
216
- File.unlink()
217
-
218
- Logger.info(f'🎉 Video Saved To: {OutputVideoPath}')
219
-
220
- # Update UI - return values directly in the order specified in the click function
221
- FirstFrame = AllFrames[0] if AllFrames else None
222
- DownloadValue = App.update(interactive=True, value=str(OutputVideoPath))
223
- yield FirstFrame, DownloadValue
224
-
225
- # Release resources
226
- del Model, FrameBuffer, AllFrames
227
- Progress(1.0, '🧹 Cleaning Up Resources')
228
- gc.collect()
229
- if Device.type == 'cuda':
230
  torch.cuda.empty_cache()
231
- Logger.info('🧹 CUDA Memory Cleaned Up')
232
- Logger.info('🧹 Model Unloaded')
233
- Progress(1.0, '📦 Done!')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
 
235
  # ============================== #
236
  # Streamlined UI #
237
  # ============================== #
238
 
239
- with App.Blocks(title='Video Upscaler', theme=Theme, delete_cache=(60, 600)) as Interface:
 
 
240
  App.Markdown('# 🎞️ Video Upscaler')
241
  App.Markdown('''
242
  Space created by [Hyphonical](https://huggingface.co/Hyphonical), this space uses several models from [styler00dollar/VSGAN-tensorrt-docker](https://github.com/styler00dollar/VSGAN-tensorrt-docker/releases/tag/models)
@@ -245,38 +235,112 @@ with App.Blocks(title='Video Upscaler', theme=Theme, delete_cache=(60, 600)) as
245
  ''')
246
 
247
  with App.Row():
248
- with App.Column(scale=1):
249
  with App.Group():
250
- InputVideo = App.Video(label='Input Video', sources=['upload'], height=300)
251
- ModelList = ListModels()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
  ModelNames = [Path(Model).stem for Model in ModelList]
253
- InputModel = App.Dropdown(choices=ModelNames, label='Select Model', value=ModelNames[0] if ModelNames else None)
254
- with App.Row():
255
- InputFrameRate = App.Slider(label='Frame Rate', minimum=1, maximum=60, value=23.976, step=0.001)
256
- InputTileGridSize = App.Slider(label='Tile Grid Size', minimum=1, maximum=6, value=1, step=1, show_reset_button=False)
257
- InputFileType = App.Dropdown(choices=['.mp4', '.mkv'], label='Output File Type', value='.mkv', interactive=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
  SubmitButton = App.Button('🚀 Upscale Video')
259
 
260
- with App.Column(scale=1, show_progress=True):
261
- OutputSlider = App.ImageSlider(label='Output Preview', value=None, height=300)
262
- DownloadOutput = App.DownloadButton(label='💾 Download Video', interactive=False)
263
- with App.Accordion(label='📜 Instructions', open=False):
264
- App.Markdown('''
265
- ### How To Use The Video Upscaler
266
-
267
- 1. **Upload A Video:** Begin by uploading your video file using the 'Input Video' section.
268
- 2. **Select A Model:** Choose an appropriate upscaling model from the 'Select Model' dropdown menu.
269
- 3. **Adjust Settings (Optional):**
270
- Modify the 'Frame Rate' slider if you want to change the output video's frame rate.
271
- Adjust the 'Tile Grid Size' for memory optimization. Larger models might require a higher grid size, but processing could be slower.
272
- 4. **Start Processing:** Click the '🚀 Upscale Video' button to begin the upscaling process.
273
- 5. **Download The Result:** Once the process is complete, download the upscaled video using the '💾 Download Video' button.
274
-
275
- > Tip: If you get a CUDA out of memory error, try increasing the Tile Grid Size. This will split the image into smaller tiles for processing, which can help reduce memory usage.
276
- ''')
277
-
278
- SubmitButton.click(fn=Process, inputs=[InputVideo, InputModel, InputFrameRate, InputTileGridSize, InputFileType],
279
- outputs=[OutputSlider, DownloadOutput])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
 
281
  if __name__ == '__main__':
282
  os.makedirs(ModelDir, exist_ok=True)
 
1
  from spandrel import ModelLoader
2
  import torch
3
  from pathlib import Path
 
4
  import gradio as App
 
 
5
  import logging
6
  import spaces
7
  import time
 
 
 
8
  import cv2
9
+ import os
10
 
11
  from gradio import themes
12
  from rich.console import Console
13
  from rich.logging import RichHandler
14
 
15
+ from Scripts.SAD import GetDifferenceRectangles
16
+
17
  # ============================== #
18
  # Core Settings #
19
  # ============================== #
20
 
21
+ Theme = themes.Citrus(
22
+ primary_hue='blue',
23
+ secondary_hue='blue',
24
+ radius_size=themes.sizes.radius_xxl
25
+ ).set(
26
+ link_text_color='blue'
27
+ )
28
  ModelDir = Path('./Models')
29
  TempDir = Path('./Temp')
30
  os.environ['GRADIO_TEMP_DIR'] = str(TempDir)
31
  ModelFileType = '.pth'
32
 
33
  # ============================== #
34
+ # Logging #
35
  # ============================== #
36
 
37
+ logging.basicConfig(
38
+ level=logging.INFO,
39
+ format='%(message)s',
40
+ datefmt='[%X]',
41
+ handlers=[RichHandler(
42
+ console=Console(),
43
+ rich_tracebacks=True,
44
+ omit_repeated_times=False,
45
+ markup=True,
46
+ show_path=False,
47
+ )],
48
+ )
49
  Logger = logging.getLogger('Video2x')
50
  logging.getLogger('httpx').setLevel(logging.WARNING)
51
 
 
56
  @spaces.GPU
57
  def GetDeviceName():
58
  Device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
59
+ Logger.info(f'🧪 Using device: {str(Device).upper()}')
60
  return Device
61
 
62
  Device = GetDeviceName()
63
 
64
  # ============================== #
65
+ # Utility Functions #
66
  # ============================== #
67
 
68
+ def HumanizeSeconds(Seconds):
69
  Hours = int(Seconds // 3600)
70
  Minutes = int((Seconds % 3600) // 60)
71
  Seconds = int(Seconds % 60)
 
77
  else:
78
  return f'{Seconds}s'
79
 
80
+ def HumanizedBytes(Size):
81
+ Units = ['B', 'KB', 'MB', 'GB', 'TB']
82
+ Index = 0
83
+ while Size >= 1024 and Index < len(Units) - 1:
84
+ Size /= 1024.0
85
+ Index += 1
86
+ return f'{Size:.2f} {Units[Index]}'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
+ # ============================== #
89
+ # Main Processing Logic #
90
+ # ============================== #
91
 
92
  @spaces.GPU
93
+ class Upscaler:
94
+ def __init__(self):
95
+ pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
+ def ListModels(self):
98
+ Models = sorted(
99
+ [File.name for File in ModelDir.glob('*' + ModelFileType) if File.is_file()]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
  )
101
+ Logger.info(f'📚 Found {len(Models)} Models In Directory')
102
+ return Models
103
 
104
+ def LoadModel(self, ModelName):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  torch.cuda.empty_cache()
106
+ Model = (
107
+ ModelLoader()
108
+ .load_from_file(ModelDir / (ModelName + ModelFileType))
109
+ .to(Device)
110
+ .eval()
111
+ )
112
+ Logger.info(f'🤖 Loaded Model {ModelName} Onto {str(Device).upper()}')
113
+ return Model
114
+
115
+ def UnloadModel(self):
116
+ if Device.type == 'cuda':
117
+ torch.cuda.empty_cache()
118
+ Logger.info('🤖 Model Unloaded Successfully')
119
+
120
+ def CleanUp(self):
121
+ self.UnloadModel()
122
+ Logger.info('🧹 Temporary Files Cleaned Up')
123
+
124
+ def Process(self, InputVideo, InputModel, InputUseRegions, InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding, Progress=App.Progress()):
125
+ if not InputVideo:
126
+ Logger.warning('❌ No Video Provided')
127
+ App.Warning('❌ No Video Provided')
128
+ return None, None
129
+
130
+ Progress(0, desc='⚙️ Loading Model')
131
+ Model = self.LoadModel(InputModel)
132
+
133
+ Logger.info(f'📼 Processing Video: {Path(InputVideo).name}')
134
+ Progress(0, desc='📼 Processing Video')
135
+ Video = cv2.VideoCapture(InputVideo)
136
+
137
+ FrameRate = Video.get(cv2.CAP_PROP_FPS)
138
+ FrameCount = int(Video.get(cv2.CAP_PROP_FRAME_COUNT))
139
+ Width = int(Video.get(cv2.CAP_PROP_FRAME_WIDTH))
140
+ Height = int(Video.get(cv2.CAP_PROP_FRAME_HEIGHT))
141
+
142
+ Logger.info(f'📏 Video Properties: {FrameCount} Frames, {FrameRate} FPS, {Width}x{Height}')
143
+
144
+ PerFrameProgress = 1 / FrameCount
145
+ FrameProgress = 0.0
146
+ StartTime = time.time()
147
+ Times = []
148
+
149
+ while True:
150
+ Ret, Frame = Video.read()
151
+ if not Ret:
152
+ break
153
+
154
+ FrameRgb = cv2.cvtColor(Frame, cv2.COLOR_BGR2RGB)
155
+ FrameForTorch = FrameRgb.transpose(2, 0, 1)
156
+ FrameForTorch = torch.from_numpy(FrameForTorch).unsqueeze(0).to(Device).float() / 255.0
157
+
158
+ RetNext, NextFrame = Video.read()
159
+ if not RetNext:
160
+ NextFrame = Frame
161
+
162
+ DiffResult = GetDifferenceRectangles(
163
+ Frame,
164
+ NextFrame,
165
+ Threshold=InputThreshold,
166
+ Rows=12,
167
+ Columns=20,
168
+ Padding=InputPadding
169
+
170
+ )
171
+ SimilarityPercentage = DiffResult['SimilarPercentage']
172
+ Rectangles = DiffResult['Rectangles']
173
+
174
+ if SimilarityPercentage > InputMinPercentage and len(Rectangles) < InputMaxRectangles and InputUseRegions:
175
+ Logger.info(f'🟩 Frame {int(Video.get(cv2.CAP_PROP_POS_FRAMES))}: {SimilarityPercentage:.2f}% Similar, {len(Rectangles)} Regions To Upscale')
176
+ Cols = DiffResult['Columns']
177
+ Rows = DiffResult['Rows']
178
+ FrameHeight, FrameWidth = Frame.shape[:2]
179
+ SegmentWidth = FrameWidth // Cols
180
+ SegmentHeight = FrameHeight // Rows
181
+ for X, Y, W, H in Rectangles:
182
+ X1 = X * SegmentWidth
183
+ Y1 = Y * SegmentHeight
184
+ X2 = FrameWidth if X + W == Cols else X1 + W * SegmentWidth
185
+ Y2 = FrameHeight if Y + H == Rows else Y1 + H * SegmentHeight
186
+
187
+ Region = Frame[Y1:Y2, X1:X2]
188
+ RegionRgb = cv2.cvtColor(Region, cv2.COLOR_BGR2RGB)
189
+ RegionTorch = torch.from_numpy(RegionRgb.transpose(2, 0, 1)).unsqueeze(0).to(Device).float() / 255.0
190
+ UpscaledRegion = Model(RegionTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0 # type: ignore
191
+ UpscaledRegion = cv2.cvtColor(UpscaledRegion.astype('uint8'), cv2.COLOR_RGB2BGR)
192
+ RegionHeight, RegionWidth = Region.shape[:2]
193
+ UpscaledRegion = cv2.resize(UpscaledRegion, (RegionWidth, RegionHeight), interpolation=cv2.INTER_CUBIC)
194
+ Frame[Y1:Y2, X1:X2] = UpscaledRegion
195
+ OutputFrame = Frame
196
+ else:
197
+ Logger.info(f'🟥 Frame {int(Video.get(cv2.CAP_PROP_POS_FRAMES))}: {SimilarityPercentage:.2f}% Similar, Upscaling Full Frame')
198
+ OutputFrame = Model(FrameForTorch)[0].cpu().numpy().transpose(1, 2, 0) * 255.0 # type: ignore
199
+ OutputFrame = cv2.cvtColor(OutputFrame.astype('uint8'), cv2.COLOR_RGB2BGR)
200
+ OutputFrame = cv2.resize(OutputFrame, (Width, Height), interpolation=cv2.INTER_CUBIC)
201
+
202
+ CurrentFrameNumber = int(Video.get(cv2.CAP_PROP_POS_FRAMES))
203
+ if Times:
204
+ AverageTime = sum(Times) / len(Times)
205
+ Eta = HumanizeSeconds((FrameCount - CurrentFrameNumber) * AverageTime)
206
+ else:
207
+ Eta = None
208
+
209
+ Progress(FrameProgress, desc=f'📦 Processed Frame {len(Times)+1}/{FrameCount} - {Eta}')
210
+ Logger.info(f'📦 Processed Frame {len(Times)+1}/{FrameCount} - {Eta}')
211
+
212
+ cv2.imwrite(f'{TempDir}/Upscaled_Frame_{CurrentFrameNumber:05d}.png', OutputFrame)
213
+
214
+ DeltaTime = time.time() - StartTime
215
+ Times.append(DeltaTime)
216
+ StartTime = time.time()
217
+ FrameProgress += PerFrameProgress
218
+
219
+ Progress(1, desc='📦 Cleaning Up')
220
+ self.CleanUp()
221
+ return InputVideo, InputVideo
222
 
223
  # ============================== #
224
  # Streamlined UI #
225
  # ============================== #
226
 
227
+ with App.Blocks(
228
+ title='Video Upscaler', theme=Theme, delete_cache=(-1, 1800)
229
+ ) as Interface:
230
  App.Markdown('# 🎞️ Video Upscaler')
231
  App.Markdown('''
232
  Space created by [Hyphonical](https://huggingface.co/Hyphonical), this space uses several models from [styler00dollar/VSGAN-tensorrt-docker](https://github.com/styler00dollar/VSGAN-tensorrt-docker/releases/tag/models)
 
235
  ''')
236
 
237
  with App.Row():
238
+ with App.Column():
239
  with App.Group():
240
+ with App.Accordion(label='📜 Instructions', open=False):
241
+ App.Markdown('''
242
+ ### How To Use The Video Upscaler
243
+ 1. **Upload A Video:** Begin by uploading your video file using the 'Input Video' section.
244
+ 2. **Select A Model:** Choose an appropriate upscaling model from the 'Select Model' dropdown menu.
245
+ 3. **Adjust Settings (Optional):**
246
+ Modify the 'Frame Rate' slider if you want to change the output video's frame rate.
247
+ Adjust the 'Tile Grid Size' for memory optimization. Larger models might require a higher grid size, but processing could be slower.
248
+ 4. **Start Processing:** Click the '🚀 Upscale Video' button to begin the upscaling process.
249
+ 5. **Download The Result:** Once the process is complete, download the upscaled video using the '💾 Download Video' button.
250
+ > Tip: If you get a CUDA out of memory error, try increasing the Tile Grid Size. This will split the image into smaller tiles for processing, which can help reduce memory usage.
251
+ ''')
252
+ InputVideo = App.Video(
253
+ label='Input Video', sources=['upload'], height=300
254
+ )
255
+ ModelList = Upscaler().ListModels()
256
  ModelNames = [Path(Model).stem for Model in ModelList]
257
+ InputModel = App.Dropdown(
258
+ choices=ModelNames,
259
+ label='Select Model',
260
+ value=ModelNames[0],
261
+ )
262
+ with App.Accordion(label='⚙️ Advanced Settings', open=False):
263
+ with App.Group():
264
+ InputUseRegions = App.Checkbox(
265
+ label='Use Regions',
266
+ value=False,
267
+ info='Use regions to upscale only the different parts of the video (⚡️ Experimental, Faster)',
268
+ interactive=True
269
+ )
270
+ InputThreshold = App.Slider(
271
+ label='Threshold',
272
+ value=5,
273
+ minimum=0,
274
+ maximum=20,
275
+ step=0.5,
276
+ info='Threshold for the SAD algorithm to detect different regions',
277
+ interactive=False
278
+ )
279
+ InputPadding = App.Slider(
280
+ label='Padding',
281
+ value=1,
282
+ minimum=0,
283
+ maximum=5,
284
+ step=1,
285
+ info='Extra padding to include neighboring pixels in the SAD algorithm',
286
+ interactive=False
287
+ )
288
+ InputMinPercentage = App.Slider(
289
+ label='Min Percentage',
290
+ value=70,
291
+ minimum=0,
292
+ maximum=100,
293
+ step=1,
294
+ info='Minimum percentage of similarity to consider upscaling the full frame',
295
+ interactive=False
296
+ )
297
+ InputMaxRectangles = App.Slider(
298
+ label='Max Rectangles',
299
+ value=8,
300
+ minimum=1,
301
+ maximum=10,
302
+ step=1,
303
+ info='Maximum number of rectangles to consider upscaling the full frame',
304
+ interactive=False
305
+ )
306
  SubmitButton = App.Button('🚀 Upscale Video')
307
 
308
+ with App.Column(show_progress=True):
309
+ with App.Group():
310
+ OutputVideo = App.Video(
311
+ label='Output Video', height=300, interactive=False, format=None
312
+ )
313
+ OutputDownload = App.DownloadButton(
314
+ label='💾 Download Video', interactive=False
315
+ )
316
+
317
+ def ToggleRegionInputs(UseRegions):
318
+ return (
319
+ App.update(interactive=UseRegions),
320
+ App.update(interactive=UseRegions),
321
+ App.update(interactive=UseRegions),
322
+ App.update(interactive=UseRegions),
323
+ )
324
+
325
+ InputUseRegions.change(
326
+ fn=ToggleRegionInputs,
327
+ inputs=[InputUseRegions],
328
+ outputs=[InputThreshold, InputMinPercentage, InputMaxRectangles, InputPadding],
329
+ )
330
+
331
+ SubmitButton.click(
332
+ fn=Upscaler().Process,
333
+ inputs=[
334
+ InputVideo,
335
+ InputModel,
336
+ InputUseRegions,
337
+ InputThreshold,
338
+ InputMinPercentage,
339
+ InputMaxRectangles,
340
+ InputPadding
341
+ ],
342
+ outputs=[OutputVideo, OutputDownload],
343
+ )
344
 
345
  if __name__ == '__main__':
346
  os.makedirs(ModelDir, exist_ok=True)
Diff.py DELETED
@@ -1,151 +0,0 @@
1
- import numpy as np
2
- import cv2
3
- import time
4
- import logging
5
-
6
- # Set up logging
7
- logging.basicConfig(level=logging.INFO)
8
- Logger = logging.getLogger(__name__)
9
-
10
- def MergeBoxes(Boxes, Padding=5):
11
- if len(Boxes) <= 1:
12
- return Boxes
13
- MergedOccurred = True
14
- while MergedOccurred:
15
- MergedOccurred = False
16
- NewBoxes = []
17
- Boxes.sort(key=lambda b: b[0])
18
- Used = [False] * len(Boxes)
19
- for Index in range(len(Boxes)):
20
- if Used[Index]:
21
- continue
22
- CurrentBox = list(Boxes[Index])
23
- Used[Index] = True
24
- for J in range(Index + 1, len(Boxes)):
25
- if Used[J]:
26
- continue
27
- NextBox = Boxes[J]
28
- OverlapX = max(CurrentBox[0], NextBox[0]) <= min(CurrentBox[0] + CurrentBox[2], NextBox[0] + NextBox[2]) + Padding
29
- OverlapY = max(CurrentBox[1], NextBox[1]) <= min(CurrentBox[1] + CurrentBox[3], NextBox[1] + NextBox[3]) + Padding
30
- if OverlapX and OverlapY:
31
- NewX = min(CurrentBox[0], NextBox[0])
32
- NewY = min(CurrentBox[1], NextBox[1])
33
- NewW = max(CurrentBox[0] + CurrentBox[2], NextBox[0] + NextBox[2]) - NewX
34
- NewH = max(CurrentBox[1] + CurrentBox[3], NextBox[1] + NextBox[3]) - NewY
35
- CurrentBox = [NewX, NewY, NewW, NewH]
36
- Used[J] = True
37
- MergedOccurred = True
38
- NewBoxes.append(tuple(CurrentBox))
39
- Boxes = NewBoxes
40
- return Boxes
41
-
42
- def GetChangeMask(Image1, Image2, Threshold=25, MinArea=100):
43
- if Image1.shape != Image2.shape:
44
- Logger.warning(f'Image shapes differ: {Image1.shape} vs {Image2.shape}. Resizing Image2.')
45
- Image2 = cv2.resize(Image2, (Image1.shape[1], Image1.shape[0]))
46
-
47
- Gray1 = cv2.cvtColor(Image1, cv2.COLOR_BGR2GRAY)
48
- Gray2 = cv2.cvtColor(Image2, cv2.COLOR_BGR2GRAY)
49
- Blur1 = cv2.GaussianBlur(Gray1, (5, 5), 0)
50
- Blur2 = cv2.GaussianBlur(Gray2, (5, 5), 0)
51
- DiffFrame = cv2.absdiff(Blur1, Blur2)
52
- _, ThresholdCalc = cv2.threshold(DiffFrame, Threshold, 255, cv2.THRESH_BINARY)
53
- Kernel = np.ones((5, 5), np.uint8)
54
- DilatedThreshold = cv2.dilate(ThresholdCalc, Kernel, iterations=2)
55
-
56
- Contours, _ = cv2.findContours(DilatedThreshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
57
- OutputMask = np.zeros_like(DilatedThreshold)
58
- ValidContours = 0
59
- if Contours:
60
- for Contour in Contours:
61
- if cv2.contourArea(Contour) > MinArea:
62
- cv2.drawContours(OutputMask, [Contour], -1, 255, -1) # type: ignore
63
- ValidContours +=1
64
- Logger.info(f'GetChangeMask: Found {len(Contours)} raw contours, kept {ValidContours} after MinArea filter ({MinArea}).')
65
- return OutputMask
66
-
67
- def VisualizeDifferences(Image1Path, Image2Path, OutputPath, Threshold=25, MinArea=100, OutlineColor=(0, 255, 0), FillColor=(0, 180, 0), FillAlpha=0.3):
68
- Logger.info(f'🎨 Visualizing differences between {Image1Path} and {Image2Path}')
69
- Image1 = cv2.imread(Image1Path)
70
- Image2 = cv2.imread(Image2Path)
71
-
72
- if Image1 is None or Image2 is None:
73
- Logger.error(f'❌ Error loading images for visualization: {Image1Path} or {Image2Path}')
74
- return
75
-
76
- if Image1.shape != Image2.shape:
77
- Logger.warning(f'⚠️ Image shapes differ: {Image1.shape} vs {Image2.shape}. Resizing Image2 for visualization.')
78
- Image2 = cv2.resize(Image2, (Image1.shape[1], Image1.shape[0]))
79
-
80
- ChangedMask = GetChangeMask(Image1, Image2, Threshold, MinArea)
81
- OutputImage = Image2.copy()
82
- Overlay = OutputImage.copy()
83
-
84
- # Apply fill color to changed areas
85
- Overlay[ChangedMask == 255] = FillColor
86
- cv2.addWeighted(Overlay, FillAlpha, OutputImage, 1 - FillAlpha, 0, OutputImage)
87
-
88
- # Find contours of the changed areas to draw outlines
89
- Contours, _ = cv2.findContours(ChangedMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
90
- cv2.drawContours(OutputImage, Contours, -1, OutlineColor, 2)
91
- Logger.info(f'🎨 Drew {len(Contours)} difference regions.')
92
-
93
- try:
94
- cv2.imwrite(OutputPath, OutputImage)
95
- Logger.info(f'💾 Saved difference visualization to {OutputPath}')
96
- except Exception as E:
97
- Logger.error(f'❌ Failed to save visualization {OutputPath}: {E}')
98
-
99
- # --- Function to be used in App.py for upscaling ---
100
- def GetChangedRegions(Image1, Image2, Threshold=25, Padding=10, MinArea=100, MergePadding=5):
101
- StartTime = time.time()
102
- Logger.info('🔄 Comparing images...')
103
-
104
- if Image1 is None or Image2 is None:
105
- Logger.error('❌ Cannot compare None images.')
106
- return []
107
-
108
- if Image1.shape != Image2.shape:
109
- Logger.warning(f'⚠️ Image shapes differ: {Image1.shape} vs {Image2.shape}. Resizing Image2.')
110
- Image2 = cv2.resize(Image2, (Image1.shape[1], Image1.shape[0]))
111
-
112
- Gray1 = cv2.cvtColor(Image1, cv2.COLOR_BGR2GRAY)
113
- Gray2 = cv2.cvtColor(Image2, cv2.COLOR_BGR2GRAY)
114
- Blur1 = cv2.GaussianBlur(Gray1, (5, 5), 0)
115
- Blur2 = cv2.GaussianBlur(Gray2, (5, 5), 0)
116
- DiffFrame = cv2.absdiff(Blur1, Blur2)
117
- _, ThresholdCalc = cv2.threshold(DiffFrame, Threshold, 255, cv2.THRESH_BINARY)
118
- Kernel = np.ones((5, 5), np.uint8)
119
- DilatedThreshold = cv2.dilate(ThresholdCalc, Kernel, iterations=2)
120
- Contours, _ = cv2.findContours(DilatedThreshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
121
- Logger.info(f'🔎 Found {len(Contours)} raw contours.')
122
-
123
- BoundingBoxes = []
124
- if Contours:
125
- ValidContours = 0
126
- for Contour in Contours:
127
- ContourArea = cv2.contourArea(Contour)
128
- if ContourArea > MinArea:
129
- ValidContours += 1
130
- X, Y, W, H = cv2.boundingRect(Contour)
131
- PaddedX = max(0, X - Padding)
132
- PaddedY = max(0, Y - Padding)
133
- MaxW = Image1.shape[1] - PaddedX
134
- MaxH = Image1.shape[0] - PaddedY
135
- PaddedW = min(W + (Padding * 2), MaxW)
136
- PaddedH = min(H + (Padding * 2), MaxH)
137
- BoundingBoxes.append((PaddedX, PaddedY, PaddedW, PaddedH))
138
- Logger.info(f'📊 Filtered {ValidContours} contours based on MinArea ({MinArea}).')
139
-
140
- InitialBoxCount = len(BoundingBoxes)
141
- MergedBoundingBoxes = MergeBoxes(BoundingBoxes, MergePadding)
142
- EndTime = time.time()
143
- if MergedBoundingBoxes:
144
- Logger.info(f'📦 Merged {InitialBoxCount} boxes into {len(MergedBoundingBoxes)} regions.')
145
- else:
146
- Logger.info('❌ No significant changed regions found after filtering and merging.')
147
- Logger.info(f'⏱️ Region finding took {EndTime - StartTime:.3f}s')
148
- return MergedBoundingBoxes
149
-
150
- # Example call for the new visualization function
151
- VisualizeDifferences(r'C:\Users\joris\Pictures\frame_01660.png', r'C:\Users\joris\Pictures\frame_01661.png', './Diff.png', 25, 100, (0, 255, 0), (0, 180, 0), 0.3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Models/1x_Anime1080Fixer_SuperUltraCompact.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dca070132d022f8c82036aa687e45d552e8c583be7cdb81094cb835638df6e29
3
+ size 183907
Scripts/SAD.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+
4
+ # Segmented Absolute Difference (SAD)
5
+ # Compares two frames, highlights differences in segments, and returns rectangles of changed areas
6
+
7
+ def HighlightDifferences(BaseFrame: np.ndarray, NextFrame: np.ndarray, Columns: int = 20, Rows: int = 12, Threshold: float = 10, Padding: int = 1):
8
+ FrameHeight, FrameWidth = BaseFrame.shape[:2]
9
+ SegmentWidth = FrameWidth // Columns
10
+ SegmentHeight = FrameHeight // Rows
11
+ HighlightedFrame = BaseFrame.copy()
12
+ TotalSegments = 0
13
+ SimilarSegments = 0
14
+ DifferentSegments = 0
15
+ DifferentSegmentMask = np.zeros((Rows, Columns), dtype=bool)
16
+ for Row in range(Rows):
17
+ for Col in range(Columns):
18
+ Y = Row * SegmentHeight
19
+ X = Col * SegmentWidth
20
+ Y2 = FrameHeight if Row == Rows - 1 else Y + SegmentHeight
21
+ X2 = FrameWidth if Col == Columns - 1 else X + SegmentWidth
22
+ TotalSegments += 1
23
+ SegmentBase = BaseFrame[Y:Y2, X:X2]
24
+ SegmentNext = NextFrame[Y:Y2, X:X2]
25
+ GreyBase = cv2.cvtColor(SegmentBase, cv2.COLOR_BGR2GRAY)
26
+ GreyNext = cv2.cvtColor(SegmentNext, cv2.COLOR_BGR2GRAY)
27
+ BlurredBase = cv2.GaussianBlur(GreyBase, (5, 5), 0)
28
+ BlurredNext = cv2.GaussianBlur(GreyNext, (5, 5), 0)
29
+ AbsDiff = cv2.absdiff(BlurredBase, BlurredNext)
30
+ MeanDiff = np.mean(AbsDiff) # type: ignore
31
+ if MeanDiff > Threshold:
32
+ DifferentSegments += 1
33
+ DifferentSegmentMask[Row, Col] = True
34
+ else:
35
+ SimilarSegments += 1
36
+ PaddedMask = DifferentSegmentMask.copy()
37
+ for Row in range(Rows):
38
+ for Col in range(Columns):
39
+ if DifferentSegmentMask[Row, Col]:
40
+ for PR in range(max(0, Row - Padding), min(Rows, Row + Padding + 1)):
41
+ for PC in range(max(0, Col - Padding), min(Columns, Col + Padding + 1)):
42
+ PaddedMask[PR, PC] = True
43
+ for Row in range(Rows):
44
+ for Col in range(Columns):
45
+ Y = Row * SegmentHeight
46
+ X = Col * SegmentWidth
47
+ Y2 = FrameHeight if Row == Rows - 1 else Y + SegmentHeight
48
+ X2 = FrameWidth if Col == Columns - 1 else X + SegmentWidth
49
+ SegmentBase = BaseFrame[Y:Y2, X:X2]
50
+ if PaddedMask[Row, Col]:
51
+ HighlightedFrame[Y:Y2, X:X2] = cv2.addWeighted(
52
+ HighlightedFrame[Y:Y2, X:X2], 0.5,
53
+ np.full_like(SegmentBase, (0, 0, 255)), 0.2, 0
54
+ )
55
+ else:
56
+ HighlightedFrame[Y:Y2, X:X2] = cv2.addWeighted(
57
+ HighlightedFrame[Y:Y2, X:X2], 0.5,
58
+ np.full_like(SegmentBase, (0, 255, 0)), 0.2, 0
59
+ )
60
+ SimilarityPercentage = (SimilarSegments / TotalSegments) * 100
61
+ TileCoords = []
62
+ for Row in range(Rows):
63
+ for Col in range(Columns):
64
+ if PaddedMask[Row, Col]:
65
+ TileCoords.append((Col, Row))
66
+ return HighlightedFrame, DifferentSegments, SimilarityPercentage, TileCoords
67
+
68
+ def GetRectanglesFromTiles(TileMask: np.ndarray, MinDifferentRatio: float = 0.8):
69
+ Height, Width = TileMask.shape
70
+ Visited = np.zeros_like(TileMask, dtype=bool)
71
+ Rectangles = []
72
+ for Y in range(Height):
73
+ for X in range(Width):
74
+ if TileMask[Y, X] and not Visited[Y, X]:
75
+ W = 1
76
+ H = 1
77
+ Expand = True
78
+ while Expand:
79
+ Expand = False
80
+ if X + W < Width:
81
+ NewCol = TileMask[Y:Y+H, X+W] & ~Visited[Y:Y+H, X+W]
82
+ if np.any(NewCol):
83
+ NewRect = TileMask[Y:Y+H, X:X+W+1] & ~Visited[Y:Y+H, X:X+W+1]
84
+ Total = NewRect.size
85
+ Diff = np.count_nonzero(NewRect)
86
+ Ratio = Diff / Total
87
+ if Ratio >= MinDifferentRatio and not np.any(Visited[Y:Y+H, X+W]):
88
+ W += 1
89
+ Expand = True
90
+ if Y + H < Height:
91
+ NewRow = TileMask[Y+H, X:X+W] & ~Visited[Y+H, X:X+W]
92
+ if np.any(NewRow):
93
+ NewRect = TileMask[Y:Y+H+1, X:X+W] & ~Visited[Y:Y+H+1, X:X+W]
94
+ Total = NewRect.size
95
+ Diff = np.count_nonzero(NewRect)
96
+ Ratio = Diff / Total
97
+ if Ratio >= MinDifferentRatio and not np.any(Visited[Y+H, X:X+W]):
98
+ H += 1
99
+ Expand = True
100
+ Visited[Y:Y+H, X:X+W] = True
101
+ Rectangles.append((X, Y, W, H))
102
+ return Rectangles
103
+
104
+ def GetDifferenceRectangles(BaseFrame, NextFrame, Columns=20, Rows=12, Threshold=5, Padding=1):
105
+ HighlightedFrame, DifferentSegments, SimilarPercentage, TileCoords = HighlightDifferences(
106
+ BaseFrame, NextFrame, Columns=Columns, Rows=Rows, Threshold=Threshold, Padding=Padding
107
+ )
108
+ TileMask = np.zeros((Rows, Columns), dtype=bool)
109
+ for Col, Row in TileCoords:
110
+ if Row < TileMask.shape[0] and Col < TileMask.shape[1]:
111
+ TileMask[Row, Col] = True
112
+ Rectangles = GetRectanglesFromTiles(TileMask, MinDifferentRatio=0.7)
113
+ return {
114
+ 'HighlightedFrame': HighlightedFrame,
115
+ 'Rectangles': Rectangles,
116
+ 'SimilarPercentage': SimilarPercentage,
117
+ 'TileCoords': TileCoords,
118
+ 'Columns': Columns,
119
+ 'Rows': Rows
120
+ }