AI_SEO_Crawler / deduplication.py
sagarnildass's picture
Upload folder using huggingface_hub
6f509ec verified
"""
Content deduplication component for the web crawler.
Provides functionality to detect duplicate pages efficiently
1. Exact content hashing
2. Shingling and MinHash for near-duplicate detection
3. SimHash for fuzzy matching
"""
import hashlib
import logging
import time
from typing import Set, List, Dict, Tuple, Optional, Union
import random
import numpy as np
from collections import defaultdict
import re
import config
# Configure logging
logging.basicConfig(
level=getattr(logging, config.LOG_LEVEL),
format=config.LOG_FORMAT
)
logger = logging.getLogger(__name__)
class ContentDeduplicator:
"""
Content deduplication using multiple techniques:
- Exact match (MD5 hash)
- Near-duplicate detection (MinHash)
- Fuzzy matching (SimHash)
"""
def __init__(self):
"""Initialize the deduplicator"""
# Exact content hashing
self.content_hashes = set()
# MinHash parameters
self.num_hashes = 100
self.minhash_signatures = {} # URL -> MinHash signature
self.minhash_bands = defaultdict(set) # band_id -> set of URLs
self.band_size = 5 # Each band contains 5 signatures
self.shingle_size = 3 # k-shingles of 3 consecutive tokens
# SimHash parameters
self.simhash_dim = 64
self.simhash_values = {} # URL -> SimHash value
self.hamming_threshold = 3 # Maximum Hamming distance for similarity
# Cache of previously computed duplicates for quick lookups
self.duplicate_cache = {} # URL -> set of duplicate URLs
# Token preprocessing
self.token_pattern = re.compile(r'\w+')
self.stop_words = set(['the', 'and', 'a', 'to', 'of', 'in', 'is', 'that', 'for', 'on', 'with'])
# Statistics
self.stats = {
'exact_duplicates': 0,
'near_duplicates': 0,
'fuzzy_duplicates': 0,
'processing_time': 0,
'total_documents': 0,
}
def is_duplicate(self, url: str, content: str) -> Tuple[bool, Optional[str]]:
"""
Check if content is a duplicate
Args:
url: URL of the page
content: Page content
Returns:
(is_duplicate, duplicate_url): Tuple indicating if content is duplicate and what it duplicates
"""
start_time = time.time()
# Check exact match first (fastest)
content_hash = self._hash_content(content)
if content_hash in self.content_hashes:
self.stats['exact_duplicates'] += 1
processing_time = time.time() - start_time
self.stats['processing_time'] += processing_time
# Find the URL with the same hash
for existing_url, existing_hash in self._get_hash_map().items():
if existing_hash == content_hash and existing_url != url:
logger.debug(f"Exact duplicate detected: {url} duplicates {existing_url}")
return True, existing_url
return True, None
# Check cache for quick lookup
if url in self.duplicate_cache:
duplicate_url = next(iter(self.duplicate_cache[url]))
logger.debug(f"Duplicate found in cache: {url} duplicates {duplicate_url}")
return True, duplicate_url
# Only perform more expensive checks if configured to do so
if config.NEAR_DUPLICATE_DETECTION:
# Check for near-duplicates using MinHash
near_duplicate = self._check_minhash(url, content)
if near_duplicate:
self.stats['near_duplicates'] += 1
processing_time = time.time() - start_time
self.stats['processing_time'] += processing_time
logger.debug(f"Near-duplicate detected: {url} is similar to {near_duplicate}")
self._add_to_duplicate_cache(url, near_duplicate)
return True, near_duplicate
if config.FUZZY_DUPLICATE_DETECTION:
# Check for fuzzy matches using SimHash
fuzzy_duplicate = self._check_simhash(url, content)
if fuzzy_duplicate:
self.stats['fuzzy_duplicates'] += 1
processing_time = time.time() - start_time
self.stats['processing_time'] += processing_time
logger.debug(f"Fuzzy duplicate detected: {url} is similar to {fuzzy_duplicate}")
self._add_to_duplicate_cache(url, fuzzy_duplicate)
return True, fuzzy_duplicate
# Not a duplicate, add to index
self._add_to_index(url, content, content_hash)
self.stats['total_documents'] += 1
processing_time = time.time() - start_time
self.stats['processing_time'] += processing_time
return False, None
def _add_to_duplicate_cache(self, url: str, duplicate_url: str) -> None:
"""Add URL to duplicate cache for faster lookups"""
if url not in self.duplicate_cache:
self.duplicate_cache[url] = set()
self.duplicate_cache[url].add(duplicate_url)
# Also add reverse relationship
if duplicate_url not in self.duplicate_cache:
self.duplicate_cache[duplicate_url] = set()
self.duplicate_cache[duplicate_url].add(url)
def _get_hash_map(self) -> Dict[str, str]:
"""Get mapping of URLs to their content hashes"""
return {url: signature for url, signature in self.simhash_values.items()}
def _hash_content(self, content: str) -> str:
"""Create MD5 hash of content"""
return hashlib.md5(content.encode('utf-8')).hexdigest()
def _preprocess_content(self, content: str) -> List[str]:
"""
Preprocess content for tokenization:
1. Convert to lowercase
2. Remove HTML tags
3. Extract tokens
4. Remove stop words
"""
# Remove HTML tags
content = re.sub(r'<[^>]+>', ' ', content)
# Tokenize
tokens = self.token_pattern.findall(content.lower())
# Remove stop words
tokens = [token for token in tokens if token not in self.stop_words]
return tokens
def _add_to_index(self, url: str, content: str, content_hash: Optional[str] = None) -> None:
"""
Add content to the deduplication index
Args:
url: URL of the page
content: Page content
content_hash: Optional pre-computed hash
"""
# Add exact hash
if content_hash is None:
content_hash = self._hash_content(content)
self.content_hashes.add(content_hash)
# Add MinHash signature
if config.NEAR_DUPLICATE_DETECTION:
signature = self._compute_minhash(content)
self.minhash_signatures[url] = signature
# Add to LSH bands
for i in range(0, self.num_hashes, self.band_size):
band = tuple(signature[i:i+self.band_size])
band_id = hash(band)
self.minhash_bands[band_id].add(url)
# Add SimHash
if config.FUZZY_DUPLICATE_DETECTION:
simhash_value = self._compute_simhash(content)
self.simhash_values[url] = simhash_value
def _create_shingles(self, tokens: List[str], k: int = 3) -> Set[str]:
"""
Create k-shingles from tokens
Args:
tokens: List of tokens
k: Size of shingles
Returns:
Set of shingles
"""
return set(' '.join(tokens[i:i+k]) for i in range(len(tokens) - k + 1))
def _compute_minhash(self, content: str) -> List[int]:
"""
Compute MinHash signature for content
Args:
content: Page content
Returns:
MinHash signature (list of hash values)
"""
tokens = self._preprocess_content(content)
shingles = self._create_shingles(tokens, self.shingle_size)
# Generate random hash functions
max_hash = 2**32 - 1
# Create signature
signature = [max_hash] * self.num_hashes
# For each shingle, compute hashes and keep minimum values
for shingle in shingles:
# Use shingle as seed for random hash functions
shingle_hash = hash(shingle)
for i in range(self.num_hashes):
# Simple linear hash function: (a*x + b) mod c
a = i + 1 # Different 'a' for each hash function
b = i * i # Different 'b' for each hash function
hash_value = (a * shingle_hash + b) % max_hash
# Keep the minimum hash value
signature[i] = min(signature[i], hash_value)
return signature
def _check_minhash(self, url: str, content: str) -> Optional[str]:
"""
Check for near-duplicates using MinHash and LSH
Args:
url: URL of the page
content: Page content
Returns:
URL of duplicate page if found, None otherwise
"""
# Compute MinHash signature
signature = self._compute_minhash(content)
# Check each band for potential matches
candidate_urls = set()
for i in range(0, self.num_hashes, self.band_size):
band = tuple(signature[i:i+self.band_size])
band_id = hash(band)
# Get URLs that share this band
if band_id in self.minhash_bands:
candidate_urls.update(self.minhash_bands[band_id])
# Check Jaccard similarity with candidates
for candidate_url in candidate_urls:
if candidate_url == url:
continue
candidate_signature = self.minhash_signatures[candidate_url]
similarity = self._jaccard_similarity(signature, candidate_signature)
if similarity >= config.SIMILARITY_THRESHOLD:
return candidate_url
return None
def _jaccard_similarity(self, sig1: List[int], sig2: List[int]) -> float:
"""
Estimate Jaccard similarity from MinHash signatures
Args:
sig1: First signature
sig2: Second signature
Returns:
Estimated Jaccard similarity (0-1)
"""
if len(sig1) != len(sig2):
raise ValueError("Signatures must have the same length")
# Count matching hash values
matches = sum(1 for i in range(len(sig1)) if sig1[i] == sig2[i])
# Estimate similarity
return matches / len(sig1)
def _compute_simhash(self, content: str) -> int:
"""
Compute SimHash for content
Args:
content: Page content
Returns:
SimHash value
"""
tokens = self._preprocess_content(content)
# Initialize vector
v = [0] * self.simhash_dim
# For each token, compute hash and update vector
for token in tokens:
# Compute hash of token
token_hash = hashlib.md5(token.encode('utf-8')).digest()
# Convert to binary representation
token_bits = ''.join(format(byte, '08b') for byte in token_hash)
# Use first self.simhash_dim bits
token_bits = token_bits[:self.simhash_dim]
# Update vector
for i, bit in enumerate(token_bits):
if bit == '1':
v[i] += 1
else:
v[i] -= 1
# Create fingerprint
fingerprint = 0
for i, val in enumerate(v):
if val > 0:
fingerprint |= (1 << i)
return fingerprint
def _check_simhash(self, url: str, content: str) -> Optional[str]:
"""
Check for fuzzy duplicates using SimHash
Args:
url: URL of the page
content: Page content
Returns:
URL of duplicate page if found, None otherwise
"""
# Compute SimHash
simhash_value = self._compute_simhash(content)
# Compare with existing SimHash values
for existing_url, existing_simhash in self.simhash_values.items():
if existing_url == url:
continue
# Calculate Hamming distance
hamming_distance = bin(simhash_value ^ existing_simhash).count('1')
if hamming_distance <= self.hamming_threshold:
return existing_url
return None
def clear(self) -> None:
"""Clear all indexes and caches"""
self.content_hashes.clear()
self.minhash_signatures.clear()
self.minhash_bands.clear()
self.simhash_values.clear()
self.duplicate_cache.clear()
# Reset statistics
self.stats = {
'exact_duplicates': 0,
'near_duplicates': 0,
'fuzzy_duplicates': 0,
'processing_time': 0,
'total_documents': 0,
}
def get_stats(self) -> Dict[str, Union[int, float]]:
"""Get deduplication statistics"""
stats_copy = self.stats.copy()
# Calculate average processing time
total_docs = self.stats['total_documents']
if total_docs > 0:
avg_time = self.stats['processing_time'] / total_docs
stats_copy['avg_processing_time'] = avg_time
else:
stats_copy['avg_processing_time'] = 0
# Calculate total duplicates
total_duplicates = (self.stats['exact_duplicates'] +
self.stats['near_duplicates'] +
self.stats['fuzzy_duplicates'])
stats_copy['total_duplicates'] = total_duplicates
# Calculate duplicate percentage
if total_docs > 0:
duplicate_percentage = (total_duplicates / total_docs) * 100
stats_copy['duplicate_percentage'] = duplicate_percentage
else:
stats_copy['duplicate_percentage'] = 0
return stats_copy