""" SEO Analyzer UI using Gradio, Web Crawler, and OpenAI """ import gradio as gr import logging import json from typing import Dict, List, Any, Tuple, Optional from urllib.parse import urlparse import tldextract from openai import OpenAI import time import os import threading import queue import shutil import uuid from concurrent.futures import ThreadPoolExecutor from datetime import datetime import tempfile from crawler import Crawler from frontier import URLFrontier from models import URL, Page import config from run_crawler import reset_databases from dotenv import load_dotenv, find_dotenv load_dotenv(find_dotenv()) # Check if we're in deployment mode (e.g., Hugging Face Spaces) IS_DEPLOYMENT = os.getenv('DEPLOYMENT', 'false').lower() == 'true' # Custom CSS for better styling CUSTOM_CSS = """ .container { max-width: 1200px !important; margin: auto; padding: 20px; } .header { text-align: center; margin-bottom: 2rem; } .header h1 { color: #2d3748; font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; } .header p { color: #4a5568; font-size: 1.1rem; max-width: 800px; margin: 0 auto; } .input-section { background: #f7fafc; border-radius: 12px; padding: 24px; margin-bottom: 24px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .analysis-section { background: white; border-radius: 12px; padding: 24px; margin-top: 24px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .log-section { font-family: monospace; background: #1a202c; color: #e2e8f0; padding: 16px; border-radius: 8px; margin-top: 24px; } /* Custom styling for inputs */ .input-container { background: white; padding: 16px; border-radius: 8px; margin-bottom: 16px; } /* Custom styling for the slider */ .slider-container { padding: 12px; background: white; border-radius: 8px; } /* Custom styling for buttons */ .primary-button { background: #4299e1 !important; color: white !important; padding: 12px 24px !important; border-radius: 8px !important; font-weight: 600 !important; transition: all 0.3s ease !important; } .primary-button:hover { background: #3182ce !important; transform: translateY(-1px) !important; } /* Markdown output styling */ .markdown-output { font-family: system-ui, -apple-system, sans-serif; line-height: 1.6; } .markdown-output h1 { color: #2d3748; border-bottom: 2px solid #e2e8f0; padding-bottom: 0.5rem; } .markdown-output h2 { color: #4a5568; margin-top: 2rem; } .markdown-output h3 { color: #718096; margin-top: 1.5rem; } /* Progress bar styling */ .progress-bar { height: 8px !important; border-radius: 4px !important; background: #ebf8ff !important; } .progress-bar-fill { background: #4299e1 !important; border-radius: 4px !important; } /* Add some spacing between sections */ .gap { margin: 2rem 0; } """ # Create a custom handler that will store logs in a queue class QueueHandler(logging.Handler): def __init__(self, log_queue): super().__init__() self.log_queue = log_queue def emit(self, record): log_entry = self.format(record) try: self.log_queue.put_nowait(f"{datetime.now().strftime('%H:%M:%S')} - {log_entry}") except queue.Full: pass # Ignore if queue is full # Configure logging logging.basicConfig( level=getattr(logging, config.LOG_LEVEL), format='%(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) logger.info(f"IS_DEPLOYMENT: {IS_DEPLOYMENT}") class InMemoryStorage: """Simple in-memory storage for deployment mode""" def __init__(self): self.urls = {} self.pages = {} def reset(self): self.urls.clear() self.pages.clear() def add_url(self, url_obj): self.urls[url_obj.url] = url_obj def add_page(self, page_obj): self.pages[page_obj.url] = page_obj def get_url(self, url): return self.urls.get(url) def get_page(self, url): return self.pages.get(url) class SEOAnalyzer: """ SEO Analyzer that combines web crawler with OpenAI analysis """ def __init__(self, api_key: str): """Initialize SEO Analyzer""" self.client = OpenAI(api_key=api_key) self.crawler = None self.crawled_pages = [] self.pages_crawled = 0 self.max_pages = 0 self.crawl_complete = threading.Event() self.log_queue = queue.Queue(maxsize=1000) self.session_id = str(uuid.uuid4()) self.storage = InMemoryStorage() if IS_DEPLOYMENT else None # Add queue handler to logger queue_handler = QueueHandler(self.log_queue) queue_handler.setFormatter(logging.Formatter('%(levelname)s - %(message)s')) logger.addHandler(queue_handler) def _setup_session_storage(self) -> Tuple[str, str, str]: """ Set up session-specific storage directories Returns: Tuple of (storage_path, html_path, log_path) """ # Create session-specific paths session_storage = os.path.join(config.STORAGE_PATH, self.session_id) session_html = os.path.join(session_storage, "html") session_logs = os.path.join(session_storage, "logs") # Create directories os.makedirs(session_storage, exist_ok=True) os.makedirs(session_html, exist_ok=True) os.makedirs(session_logs, exist_ok=True) logger.info(f"Created session storage at {session_storage}") return session_storage, session_html, session_logs def _cleanup_session_storage(self): """Clean up session-specific storage""" session_path = os.path.join(config.STORAGE_PATH, self.session_id) try: if os.path.exists(session_path): shutil.rmtree(session_path) logger.info(f"Cleaned up session storage at {session_path}") except Exception as e: logger.error(f"Error cleaning up session storage: {e}") def _reset_storage(self): """Reset storage based on deployment mode""" if IS_DEPLOYMENT: self.storage.reset() else: reset_databases() def analyze_website(self, url: str, max_pages: int = 10, progress: gr.Progress = gr.Progress()) -> Tuple[str, List[Dict], str]: """ Crawl website and analyze SEO using OpenAI Args: url: Seed URL to crawl max_pages: Maximum number of pages to crawl progress: Gradio progress indicator Returns: Tuple of (overall analysis, list of page-specific analyses, log output) """ try: # Reset state self.crawled_pages = [] self.pages_crawled = 0 self.max_pages = max_pages self.crawl_complete.clear() # Set up storage if IS_DEPLOYMENT: # Use temporary directory for file storage in deployment temp_dir = tempfile.mkdtemp() session_storage = temp_dir session_html = os.path.join(temp_dir, "html") session_logs = os.path.join(temp_dir, "logs") os.makedirs(session_html, exist_ok=True) os.makedirs(session_logs, exist_ok=True) else: session_storage, session_html, session_logs = self._setup_session_storage() # Update config paths for this session config.HTML_STORAGE_PATH = session_html config.LOG_PATH = session_logs # Clear log queue while not self.log_queue.empty(): self.log_queue.get_nowait() logger.info(f"Starting analysis of {url} with max_pages={max_pages}") # Reset storage logger.info("Resetting storage...") self._reset_storage() logger.info("Storage reset completed") # Create new crawler instance with appropriate storage logger.info("Creating crawler instance...") if IS_DEPLOYMENT: # In deployment mode, use in-memory storage self.crawler = Crawler(storage=self.storage) # Set frontier to use memory mode self.crawler.frontier = URLFrontier(use_memory=True) else: # In local mode, use MongoDB and Redis self.crawler = Crawler() logger.info("Crawler instance created successfully") # Extract domain for filtering domain = self._extract_domain(url) logger.info(f"Analyzing domain: {domain}") # Add seed URL and configure domain filter self.crawler.add_seed_urls([url]) config.ALLOWED_DOMAINS = [domain] logger.info("Added seed URL and configured domain filter") # Override the crawler's _process_url method to capture pages original_process_url = self.crawler._process_url def wrapped_process_url(url_obj): if self.pages_crawled >= self.max_pages: self.crawler.running = False # Signal crawler to stop self.crawl_complete.set() return original_process_url(url_obj) # Get the page based on storage mode if IS_DEPLOYMENT: # In deployment mode, get page from in-memory storage page = self.storage.get_page(url_obj.url) if page: _, metadata = self.crawler.parser.parse(page) self.crawled_pages.append({ 'url': url_obj.url, 'content': page.content, 'metadata': metadata }) self.pages_crawled += 1 logger.info(f"Crawled page {self.pages_crawled}/{max_pages}: {url_obj.url}") else: # In local mode, get page from MongoDB page_data = self.crawler.pages_collection.find_one({'url': url_obj.url}) if page_data and page_data.get('content'): _, metadata = self.crawler.parser.parse(Page(**page_data)) self.crawled_pages.append({ 'url': url_obj.url, 'content': page_data['content'], 'metadata': metadata }) self.pages_crawled += 1 logger.info(f"Crawled page {self.pages_crawled}/{max_pages}: {url_obj.url}") if self.pages_crawled >= self.max_pages: self.crawler.running = False # Signal crawler to stop self.crawl_complete.set() self.crawler._process_url = wrapped_process_url def run_crawler(): try: # Skip signal handler registration self.crawler.running = True with ThreadPoolExecutor(max_workers=1) as executor: try: futures = [executor.submit(self.crawler._crawl_worker)] for future in futures: future.result() except Exception as e: logger.error(f"Error in crawler worker: {e}") finally: self.crawler.running = False self.crawl_complete.set() except Exception as e: logger.error(f"Error in run_crawler: {e}") self.crawl_complete.set() # Start crawler in a thread crawler_thread = threading.Thread(target=run_crawler) crawler_thread.daemon = True crawler_thread.start() # Wait for completion or timeout with progress updates timeout = 300 # 5 minutes start_time = time.time() last_progress = 0 while not self.crawl_complete.is_set() and time.time() - start_time < timeout: current_progress = min(0.8, self.pages_crawled / max_pages) if current_progress != last_progress: progress(current_progress, f"Crawled {self.pages_crawled}/{max_pages} pages") last_progress = current_progress time.sleep(0.1) # More frequent updates if time.time() - start_time >= timeout: logger.warning("Crawler timed out") self.crawler.running = False # Wait for thread to finish crawler_thread.join(timeout=10) # Restore original method self.crawler._process_url = original_process_url # Collect all logs logs = [] while not self.log_queue.empty(): logs.append(self.log_queue.get_nowait()) log_output = "\n".join(logs) if not self.crawled_pages: self._cleanup_session_storage() return "No pages were successfully crawled.", [], log_output logger.info("Starting OpenAI analysis...") progress(0.9, "Analyzing crawled pages with OpenAI...") # Analyze crawled pages with OpenAI overall_analysis = self._get_overall_analysis(self.crawled_pages) progress(0.95, "Generating page-specific analyses...") page_analyses = self._get_page_analyses(self.crawled_pages) logger.info("Analysis complete") progress(1.0, "Analysis complete") # Format the results formatted_analysis = f""" # SEO Analysis Report for {domain} ## Overall Analysis {overall_analysis} ## Page-Specific Analyses """ for page_analysis in page_analyses: formatted_analysis += f""" ### {page_analysis['url']} {page_analysis['analysis']} """ # Clean up all resources logger.info("Cleaning up resources...") if IS_DEPLOYMENT: shutil.rmtree(temp_dir, ignore_errors=True) self.storage.reset() else: self._cleanup_session_storage() self._reset_storage() logger.info("All resources cleaned up") return formatted_analysis, page_analyses, log_output except Exception as e: logger.error(f"Error analyzing website: {e}") # Clean up all resources even on error if IS_DEPLOYMENT: shutil.rmtree(temp_dir, ignore_errors=True) self.storage.reset() else: self._cleanup_session_storage() self._reset_storage() # Collect all logs logs = [] while not self.log_queue.empty(): logs.append(self.log_queue.get_nowait()) log_output = "\n".join(logs) return f"Error analyzing website: {str(e)}", [], log_output def _extract_domain(self, url: str) -> str: """Extract domain from URL""" extracted = tldextract.extract(url) return f"{extracted.domain}.{extracted.suffix}" def _get_overall_analysis(self, pages: List[Dict]) -> str: """Get overall SEO analysis using OpenAI""" try: # Prepare site overview for analysis site_overview = { 'num_pages': len(pages), 'pages': [{ 'url': page['url'], 'metadata': page['metadata'] } for page in pages] } # Create analysis prompt prompt = f""" You are an expert SEO consultant. Analyze this website's SEO based on the crawled data: {json.dumps(site_overview, indent=2)} Provide a comprehensive SEO analysis including: 1. Overall site structure and navigation 2. Common SEO issues across pages 3. Content quality and optimization 4. Technical SEO recommendations 5. Priority improvements Format your response in Markdown. """ # Get analysis from OpenAI response = self.client.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "system", "content": "You are an expert SEO consultant providing detailed website analysis."}, {"role": "user", "content": prompt} ], temperature=0.7, max_tokens=2000 ) return response.choices[0].message.content except Exception as e: logger.error(f"Error getting overall analysis: {e}") return f"Error generating overall analysis: {str(e)}" def _get_page_analyses(self, pages: List[Dict]) -> List[Dict]: """Get page-specific SEO analyses using OpenAI""" page_analyses = [] for page in pages: try: # Create page analysis prompt prompt = f""" Analyze this page's SEO: URL: {page['url']} Metadata: {json.dumps(page['metadata'], indent=2)} Provide specific recommendations for: 1. Title and meta description 2. Heading structure 3. Content optimization 4. Internal linking 5. Technical improvements Format your response in Markdown. """ # Get analysis from OpenAI response = self.client.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "system", "content": "You are an expert SEO consultant providing detailed page analysis."}, {"role": "user", "content": prompt} ], temperature=0.7, max_tokens=1000 ) page_analyses.append({ 'url': page['url'], 'analysis': response.choices[0].message.content }) # Sleep to respect rate limits time.sleep(1) except Exception as e: logger.error(f"Error analyzing page {page['url']}: {e}") page_analyses.append({ 'url': page['url'], 'analysis': f"Error analyzing page: {str(e)}" }) return page_analyses def create_ui() -> gr.Interface: """Create Gradio interface""" def analyze(url: str, api_key: str, max_pages: int, progress: gr.Progress = gr.Progress()) -> Tuple[str, str]: """Gradio interface function""" try: # Initialize analyzer analyzer = SEOAnalyzer(api_key) # Run analysis with progress updates analysis, _, logs = analyzer.analyze_website(url, max_pages, progress) # Collect all logs log_output = "" while not analyzer.log_queue.empty(): try: log_output += analyzer.log_queue.get_nowait() + "\n" except queue.Empty: break # Set progress to complete progress(1.0, "Analysis complete") # Return results return analysis, log_output except Exception as e: error_msg = f"Error: {str(e)}" logger.error(error_msg) return error_msg, error_msg # Create markdown content for the about section about_markdown = """ # 🔍 SEO Analyzer Pro Analyze your website's SEO performance using advanced crawling and AI technology. ### Features: - 🕷️ Intelligent Web Crawling - 🧠 AI-Powered Analysis - 📊 Comprehensive Reports - 🚀 Performance Insights ### How to Use: 1. Enter your website URL 2. Provide your OpenAI API key 3. Choose how many pages to analyze 4. Click Analyze and watch the magic happen! ### What You'll Get: - Detailed SEO analysis - Content quality assessment - Technical recommendations - Performance insights - Actionable improvements """ # Create the interface with custom styling with gr.Blocks(css=CUSTOM_CSS) as iface: gr.Markdown(about_markdown) with gr.Row(): with gr.Column(scale=2): with gr.Group(elem_classes="input-section"): gr.Markdown("### 📝 Enter Website Details") url_input = gr.Textbox( label="Website URL", placeholder="https://example.com", elem_classes="input-container", info="Enter the full URL of the website you want to analyze (e.g., https://example.com)" ) api_key = gr.Textbox( label="OpenAI API Key", placeholder="sk-...", type="password", elem_classes="input-container", info="Your OpenAI API key is required for AI-powered analysis. Keep this secure!" ) max_pages = gr.Slider( minimum=1, maximum=50, value=10, step=1, label="Maximum Pages to Crawl", elem_classes="slider-container", info="Choose how many pages to analyze. More pages = more comprehensive analysis but takes longer" ) analyze_btn = gr.Button( "🔍 Analyze Website", elem_classes="primary-button" ) with gr.Row(): with gr.Column(): with gr.Group(elem_classes="analysis-section"): gr.Markdown("### 📊 Analysis Results") analysis_output = gr.Markdown( label="SEO Analysis", elem_classes="markdown-output" ) with gr.Row(): with gr.Column(): with gr.Group(elem_classes="log-section"): gr.Markdown("### 📋 Process Logs") logs_output = gr.Textbox( label="Logs", lines=10, elem_classes="log-output" ) # Connect the button click to the analyze function analyze_btn.click( fn=analyze, inputs=[url_input, api_key, max_pages], outputs=[analysis_output, logs_output], ) return iface if __name__ == "__main__": # Create base storage directory if it doesn't exist os.makedirs(config.STORAGE_PATH, exist_ok=True) # Create and launch UI ui = create_ui() ui.launch( share=False, server_name="0.0.0.0", show_api=False, show_error=True, )