File size: 3,021 Bytes
44e7320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
import gradio as gr
import plotly.express as px

# === Google Sheets Auth ===
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
client = gspread.authorize(creds)

# === Load sheet data ===
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"
sheet = client.open_by_url(sheet_url).worksheet("Calls")
data = sheet.get_all_records()
df = pd.DataFrame(data)

# === Parse and clean ===
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
df['Date'] = df['Timestamp'].dt.date
df['Time'] = df['Timestamp'].dt.time

location_split = df['Location'].str.split(',', expand=True)
df['Latitude'] = pd.to_numeric(location_split[0], errors='coerce')
df['Longitude'] = pd.to_numeric(location_split[1], errors='coerce')
df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
df = df.sort_values(by=['Rep Name', 'Timestamp'])
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)

# === Functions ===
def get_reps(date):
    reps = df[df['Date'] == pd.to_datetime(date).date()]['Rep Name'].dropna().unique()
    return sorted(reps)

def show_map(date, rep):
    subset = df[(df['Date'] == pd.to_datetime(date).date()) & (df['Rep Name'] == rep)]
    if subset.empty:
        return "No valid data", None

    subset = subset.sort_values(by='Timestamp')
    fig = px.line_mapbox(
        subset,
        lat="Latitude", lon="Longitude",
        hover_name="Dealership Name",
        hover_data={"Time": True, "Time Diff (min)": True},
        zoom=10, height=500
    )
    fig.add_trace(px.scatter_mapbox(pd.DataFrame([subset.iloc[0]]),
        lat="Latitude", lon="Longitude", text=["Start"], color_discrete_sequence=["green"]).data[0])
    fig.add_trace(px.scatter_mapbox(pd.DataFrame([subset.iloc[-1]]),
        lat="Latitude", lon="Longitude", text=["End"], color_discrete_sequence=["red"]).data[0])
    fig.update_layout(mapbox_style="open-street-map", title=f"{rep} on {date}")
    table = subset[['Dealership Name', 'Time', 'Time Diff (min)']]
    return table, fig

# === Gradio UI ===
def update(date):
    return gr.Dropdown(choices=get_reps(date), label="Select Rep")

with gr.Blocks() as app:
    gr.Markdown("## 🗺️ Rep Route & Visit Visualizer")

    date_picker = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
    rep_picker = gr.Dropdown(label="Select Rep")

    btn = gr.Button("Show Route")

    table = gr.Dataframe(label="Call Table")
    map_plot = gr.Plot(label="Map")

    date_picker.change(fn=update, inputs=date_picker, outputs=rep_picker)
    btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])

app.launch()