Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,13 +9,12 @@ scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/au
|
|
9 |
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
|
10 |
client = gspread.authorize(creds)
|
11 |
|
12 |
-
# === Load sheet data ===
|
13 |
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"
|
14 |
sheet = client.open_by_url(sheet_url).worksheet("Calls")
|
15 |
data = sheet.get_all_records()
|
16 |
df = pd.DataFrame(data)
|
17 |
|
18 |
-
# === Parse and clean ===
|
19 |
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
|
20 |
df['Date'] = df['Timestamp'].dt.date.astype(str)
|
21 |
df['Time'] = df['Timestamp'].dt.time
|
@@ -27,16 +26,26 @@ df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
|
|
27 |
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
|
28 |
df = df.sort_values(by=['Rep Name', 'Timestamp'])
|
29 |
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
|
30 |
-
|
31 |
-
# Add Visit Order
|
32 |
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def get_reps(date_str):
|
41 |
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
|
42 |
return sorted(reps)
|
@@ -48,8 +57,6 @@ def show_map(date_str, rep):
|
|
48 |
|
49 |
subset = subset.sort_values(by='Timestamp').copy()
|
50 |
subset['Visit Order'] = range(1, len(subset) + 1)
|
51 |
-
|
52 |
-
# Center and zoom
|
53 |
center_lat = subset['Latitude'].mean()
|
54 |
center_lon = subset['Longitude'].mean()
|
55 |
|
@@ -85,54 +92,52 @@ def show_map(date_str, rep):
|
|
85 |
|
86 |
fig.update_layout(mapbox_style="open-street-map", title=f"๐ {rep}'s Route on {date_str}")
|
87 |
|
88 |
-
#
|
89 |
table = subset[[
|
90 |
-
'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)',
|
91 |
-
'Type of call', 'Sales or service'
|
92 |
-
]]
|
93 |
-
table = table.rename(columns={
|
94 |
'Dealership Name': '๐งญ Dealer',
|
95 |
'Time': '๐ Time',
|
96 |
'Time Diff (min)': 'โฑ๏ธ Time Spent',
|
97 |
'Type of call': '๐ Call Type',
|
98 |
-
'Sales or service': '๐ผ Category'
|
99 |
-
'Image URL': '๐ธ Photo'
|
100 |
})
|
101 |
|
102 |
-
#
|
103 |
total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
|
104 |
summary_row = pd.DataFrame([{
|
105 |
-
'๐งญ Dealer': f"๐งฎ Total Time: {total_time} min",
|
106 |
'Visit Order': '',
|
|
|
107 |
'๐ Time': '',
|
108 |
'โฑ๏ธ Time Spent': '',
|
109 |
'๐ Call Type': '',
|
110 |
-
'๐ผ Category': ''
|
111 |
-
'๐ธ Photo': ''
|
112 |
}])
|
113 |
table = pd.concat([table, summary_row], ignore_index=True)
|
114 |
|
115 |
return table, fig
|
116 |
|
117 |
# === Gradio UI ===
|
118 |
-
def update(date_str):
|
119 |
-
return gr.Dropdown(choices=get_reps(date_str), label="Select Rep")
|
120 |
-
|
121 |
with gr.Blocks() as app:
|
122 |
-
gr.Markdown("##
|
123 |
|
124 |
-
|
125 |
-
label="Select Date",
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
129 |
|
130 |
-
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
|
138 |
app.launch()
|
|
|
9 |
creds = ServiceAccountCredentials.from_json_keyfile_name("tough-star.json", scope)
|
10 |
client = gspread.authorize(creds)
|
11 |
|
12 |
+
# === Load and clean sheet data ===
|
13 |
sheet_url = "https://docs.google.com/spreadsheets/d/1bpeFS6yihb6niCavpwjWmVEypaSkGxONGg2jZfKX_sA"
|
14 |
sheet = client.open_by_url(sheet_url).worksheet("Calls")
|
15 |
data = sheet.get_all_records()
|
16 |
df = pd.DataFrame(data)
|
17 |
|
|
|
18 |
df['Timestamp'] = pd.to_datetime(df['Timestamp'], dayfirst=True, errors='coerce')
|
19 |
df['Date'] = df['Timestamp'].dt.date.astype(str)
|
20 |
df['Time'] = df['Timestamp'].dt.time
|
|
|
26 |
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
|
27 |
df = df.sort_values(by=['Rep Name', 'Timestamp'])
|
28 |
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
|
|
|
|
|
29 |
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
|
30 |
|
31 |
+
# === Helper: All unique reps in dataset ===
|
32 |
+
all_reps = sorted(df['Rep Name'].dropna().unique())
|
33 |
+
|
34 |
+
# === Tab 1: Summary ===
|
35 |
+
def generate_summary(date_str):
|
36 |
+
day_df = df[df['Date'] == date_str]
|
37 |
+
|
38 |
+
# Active reps and their total stops
|
39 |
+
active = day_df.groupby('Rep Name').size().reset_index(name='Total Visits')
|
40 |
|
41 |
+
# Detect inactive reps
|
42 |
+
active_list = active['Rep Name'].tolist()
|
43 |
+
inactive_list = [rep for rep in all_reps if rep not in active_list]
|
44 |
+
inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
|
45 |
+
|
46 |
+
return active, inactive_df
|
47 |
+
|
48 |
+
# === Tab 2: KAMs ===
|
49 |
def get_reps(date_str):
|
50 |
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
|
51 |
return sorted(reps)
|
|
|
57 |
|
58 |
subset = subset.sort_values(by='Timestamp').copy()
|
59 |
subset['Visit Order'] = range(1, len(subset) + 1)
|
|
|
|
|
60 |
center_lat = subset['Latitude'].mean()
|
61 |
center_lon = subset['Longitude'].mean()
|
62 |
|
|
|
92 |
|
93 |
fig.update_layout(mapbox_style="open-street-map", title=f"๐ {rep}'s Route on {date_str}")
|
94 |
|
95 |
+
# Final table (without photo)
|
96 |
table = subset[[
|
97 |
+
'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)',
|
98 |
+
'Type of call', 'Sales or service'
|
99 |
+
]].rename(columns={
|
|
|
100 |
'Dealership Name': '๐งญ Dealer',
|
101 |
'Time': '๐ Time',
|
102 |
'Time Diff (min)': 'โฑ๏ธ Time Spent',
|
103 |
'Type of call': '๐ Call Type',
|
104 |
+
'Sales or service': '๐ผ Category'
|
|
|
105 |
})
|
106 |
|
107 |
+
# Summary footer
|
108 |
total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
|
109 |
summary_row = pd.DataFrame([{
|
|
|
110 |
'Visit Order': '',
|
111 |
+
'๐งญ Dealer': f"๐งฎ Total Time: {total_time} min",
|
112 |
'๐ Time': '',
|
113 |
'โฑ๏ธ Time Spent': '',
|
114 |
'๐ Call Type': '',
|
115 |
+
'๐ผ Category': ''
|
|
|
116 |
}])
|
117 |
table = pd.concat([table, summary_row], ignore_index=True)
|
118 |
|
119 |
return table, fig
|
120 |
|
121 |
# === Gradio UI ===
|
|
|
|
|
|
|
122 |
with gr.Blocks() as app:
|
123 |
+
gr.Markdown("## ๐๏ธ Carfind Rep Tracker")
|
124 |
|
125 |
+
with gr.Tab("๐ Summary"):
|
126 |
+
date_summary = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
|
127 |
+
active_table = gr.Dataframe(label="โ
Active Reps (with total visits)")
|
128 |
+
inactive_table = gr.Dataframe(label="โ ๏ธ Inactive Reps")
|
129 |
+
|
130 |
+
date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[active_table, inactive_table])
|
131 |
|
132 |
+
with gr.Tab("๐ค KAM's"):
|
133 |
+
date_picker = gr.Dropdown(label="Select Date", choices=sorted(df['Date'].unique(), reverse=True))
|
134 |
+
rep_picker = gr.Dropdown(label="Select Rep")
|
135 |
+
btn = gr.Button("Show Route")
|
136 |
|
137 |
+
table = gr.Dataframe(label="Call Table")
|
138 |
+
map_plot = gr.Plot(label="Map")
|
139 |
|
140 |
+
date_picker.change(fn=get_reps, inputs=date_picker, outputs=rep_picker)
|
141 |
+
btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])
|
142 |
|
143 |
app.launch()
|