Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import pandas as pd
|
2 |
import gspread
|
3 |
import gradio as gr
|
4 |
-
import plotly.express as px
|
5 |
from oauth2client.service_account import ServiceAccountCredentials
|
|
|
6 |
|
7 |
# ------------------ AUTH ------------------
|
8 |
VALID_USERS = {
|
@@ -13,146 +13,83 @@ VALID_USERS = {
|
|
13 |
|
14 |
# ------------------ GOOGLE SHEET SETUP ------------------
|
15 |
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
|
16 |
-
creds = ServiceAccountCredentials.from_json_keyfile_name("
|
17 |
client = gspread.authorize(creds)
|
18 |
-
|
19 |
-
|
20 |
-
# ------------------
|
21 |
-
def
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
df['
|
28 |
-
df
|
29 |
-
df['
|
30 |
-
|
31 |
-
# Location parsing
|
32 |
-
location_split = df['Location'].str.split(',', expand=True)
|
33 |
-
df['Latitude'] = pd.to_numeric(location_split[0], errors='coerce')
|
34 |
-
df['Longitude'] = pd.to_numeric(location_split[1], errors='coerce')
|
35 |
-
|
36 |
-
# Data cleaning
|
37 |
-
df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
|
38 |
-
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
|
39 |
-
df = df.sort_values(by=['Rep Name', 'Timestamp'])
|
40 |
-
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
|
41 |
-
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
|
42 |
-
|
43 |
return df
|
44 |
|
45 |
-
# ------------------ DEALER ESCALATIONS DATA FUNCTION ------------------
|
46 |
-
def get_dealer_escalations():
|
47 |
-
dealers_sheet = client.open_by_url(sheet_url).worksheet("Dealers")
|
48 |
-
dealers_data = dealers_sheet.get_all_records()
|
49 |
-
dealers_df = pd.DataFrame(dealers_data)
|
50 |
-
|
51 |
-
# Standardize column names (in case of different casing/spacing)
|
52 |
-
dealers_df.columns = [c.strip() for c in dealers_df.columns]
|
53 |
-
|
54 |
-
# Filter for rows where Escalate Dealer == 'yes' (case-insensitive)
|
55 |
-
mask = dealers_df['Escalate Dealer'].str.strip() == 'Yes'
|
56 |
-
filtered_df = dealers_df.loc[mask, [
|
57 |
-
'Dealership Name',
|
58 |
-
'Rep Name',
|
59 |
-
'Escalate Dealer',
|
60 |
-
'Escalation Comment'
|
61 |
-
]]
|
62 |
-
|
63 |
-
# Optional: Sort by Rep Name and Dealership Name
|
64 |
-
filtered_df = filtered_df.sort_values(by=['Rep Name', 'Dealership Name'])
|
65 |
-
|
66 |
-
# If there are no escalations, show a friendly empty DataFrame
|
67 |
-
if filtered_df.empty:
|
68 |
-
filtered_df = pd.DataFrame(
|
69 |
-
[["No dealer escalations found.", "", "", ""]],
|
70 |
-
columns=['Dealership Name', 'Rep Name', 'Escalate Dealer', 'Escalation Comment']
|
71 |
-
)
|
72 |
-
|
73 |
-
return filtered_df
|
74 |
-
|
75 |
-
# ------------------ DASHBOARD FUNCTIONS ------------------
|
76 |
def generate_summary(date_str):
|
77 |
-
df =
|
78 |
-
all_reps = sorted(df['Rep
|
79 |
-
day_df = df[df['
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
inactive_list = [rep for rep in all_reps if rep not in active_list]
|
83 |
inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
|
84 |
-
return
|
85 |
-
|
86 |
-
def
|
87 |
-
df =
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
return "No valid data", None
|
96 |
-
|
97 |
-
subset = subset.sort_values(by='Timestamp').copy()
|
98 |
-
subset['Visit Order'] = range(1, len(subset) + 1)
|
99 |
-
center_lat = subset['Latitude'].mean()
|
100 |
-
center_lon = subset['Longitude'].mean()
|
101 |
-
|
102 |
-
fig = px.line_mapbox(
|
103 |
-
subset,
|
104 |
-
lat="Latitude", lon="Longitude",
|
105 |
-
hover_name="Dealership Name",
|
106 |
-
hover_data={"Time": True, "Time Diff (min)": True, "Visit Order": True},
|
107 |
-
height=700,
|
108 |
-
zoom=13,
|
109 |
-
center={"lat": center_lat, "lon": center_lon}
|
110 |
-
)
|
111 |
-
|
112 |
-
scatter = px.scatter_mapbox(
|
113 |
-
subset,
|
114 |
-
lat="Latitude", lon="Longitude",
|
115 |
-
color="Visit Order",
|
116 |
-
hover_name="Dealership Name",
|
117 |
-
hover_data=["Time", "Time Diff (min)"],
|
118 |
-
color_continuous_scale="Bluered"
|
119 |
-
)
|
120 |
-
for trace in scatter.data:
|
121 |
-
fig.add_trace(trace)
|
122 |
-
|
123 |
-
fig.add_trace(px.scatter_mapbox(
|
124 |
-
pd.DataFrame([subset.iloc[0]]),
|
125 |
-
lat="Latitude", lon="Longitude",
|
126 |
-
text=["Start"], color_discrete_sequence=["green"]).data[0])
|
127 |
-
fig.add_trace(px.scatter_mapbox(
|
128 |
-
pd.DataFrame([subset.iloc[-1]]),
|
129 |
-
lat="Latitude", lon="Longitude",
|
130 |
-
text=["End"], color_discrete_sequence=["red"]).data[0])
|
131 |
-
|
132 |
-
fig.update_layout(mapbox_style="open-street-map", title=f"📍 {rep}'s Route on {date_str}")
|
133 |
-
|
134 |
-
table = subset[[
|
135 |
-
'Visit Order', 'Dealership Name', 'Time', 'Time Diff (min)',
|
136 |
-
'Type of call', 'Sales or service'
|
137 |
-
]].rename(columns={
|
138 |
-
'Dealership Name': '🧭 Dealer',
|
139 |
-
'Time': '🕒 Time',
|
140 |
-
'Time Diff (min)': '⏱️ Time Spent',
|
141 |
-
'Type of call': '📞 Call Type',
|
142 |
-
'Sales or service': '💼 Category'
|
143 |
})
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# ------------------ GRADIO APP ------------------
|
158 |
with gr.Blocks() as app:
|
@@ -165,42 +102,67 @@ with gr.Blocks() as app:
|
|
165 |
login_msg = gr.Markdown("")
|
166 |
|
167 |
with gr.Column(visible=False) as main_ui:
|
168 |
-
gr.Markdown("## 🗂️
|
169 |
-
|
170 |
-
|
|
|
|
|
171 |
|
|
|
172 |
with gr.Tab("📊 Summary"):
|
173 |
date_summary = gr.Dropdown(label="Select Date", choices=unique_dates)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
def do_login(user, pw):
|
200 |
if VALID_USERS.get(user) == pw:
|
201 |
return gr.update(visible=False), gr.update(visible=True), ""
|
202 |
else:
|
203 |
-
return gr.update(visible=True), gr.update(visible=False), "❌ Invalid
|
204 |
|
205 |
login_btn.click(fn=do_login, inputs=[email, password], outputs=[login_ui, main_ui, login_msg])
|
206 |
|
|
|
1 |
import pandas as pd
|
2 |
import gspread
|
3 |
import gradio as gr
|
|
|
4 |
from oauth2client.service_account import ServiceAccountCredentials
|
5 |
+
from datetime import datetime
|
6 |
|
7 |
# ------------------ AUTH ------------------
|
8 |
VALID_USERS = {
|
|
|
13 |
|
14 |
# ------------------ GOOGLE SHEET SETUP ------------------
|
15 |
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
|
16 |
+
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
17 |
client = gspread.authorize(creds)
|
18 |
+
sheet_file = client.open("userAccess")
|
19 |
+
|
20 |
+
# ------------------ HELPERS ------------------
|
21 |
+
def load_tab(sheet_name):
|
22 |
+
return pd.DataFrame(sheet_file.worksheet(sheet_name).get_all_records())
|
23 |
+
|
24 |
+
# ------------------ FIELD SALES ------------------
|
25 |
+
def load_field_sales():
|
26 |
+
df = load_tab("Field Sales")
|
27 |
+
df['Date'] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
28 |
+
df = df.dropna(subset=["Date"])
|
29 |
+
df['DateStr'] = df['Date'].dt.date.astype(str)
|
30 |
+
df['Order Value'] = pd.to_numeric(df.get("Order Value", 0), errors='coerce').fillna(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return df
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def generate_summary(date_str):
|
34 |
+
df = load_field_sales()
|
35 |
+
all_reps = sorted(df['Rep'].dropna().unique())
|
36 |
+
day_df = df[df['DateStr'] == date_str]
|
37 |
+
|
38 |
+
total_visits = day_df.groupby("Rep").size().reset_index(name="Total Visits")
|
39 |
+
current = day_df[day_df["Current/Prospect Custor"] == "Current"]
|
40 |
+
prospect = day_df[day_df["Current/Prospect Custor"] == "Prospect"]
|
41 |
+
breakdown = pd.DataFrame({
|
42 |
+
"Rep": all_reps,
|
43 |
+
"Current": [len(current[current["Rep"] == rep]) for rep in all_reps],
|
44 |
+
"Prospect": [len(prospect[prospect["Rep"] == rep]) for rep in all_reps]
|
45 |
+
})
|
46 |
+
active_list = total_visits['Rep'].tolist()
|
47 |
inactive_list = [rep for rep in all_reps if rep not in active_list]
|
48 |
inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
|
49 |
+
return total_visits, breakdown, inactive_df
|
50 |
+
|
51 |
+
def get_order_summary(date_str):
|
52 |
+
df = load_field_sales()
|
53 |
+
day_df = df[df['DateStr'] == date_str]
|
54 |
+
rep_group = day_df.groupby("Rep").agg({
|
55 |
+
"Order Received": lambda x: (x == "Yes").sum(),
|
56 |
+
"Order Value": "sum"
|
57 |
+
}).reset_index().rename(columns={
|
58 |
+
"Order Received": "Orders Received",
|
59 |
+
"Order Value": "Total Order Value"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
})
|
61 |
+
return rep_group.sort_values(by="Total Order Value", ascending=False)
|
62 |
+
|
63 |
+
def get_escalations():
|
64 |
+
df = load_field_sales()
|
65 |
+
flagged = df[df["Customer Type"].str.contains("Second", na=False)]
|
66 |
+
return flagged if not flagged.empty else pd.DataFrame([["No second-hand dealerships flagged."]], columns=["Status"])
|
67 |
+
|
68 |
+
# ------------------ TELESALeS ------------------
|
69 |
+
def get_telesales_summary():
|
70 |
+
df = load_tab("TeleSales")
|
71 |
+
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
72 |
+
df["DateStr"] = df["Date"].dt.date.astype(str)
|
73 |
+
return df.groupby(["Rep Email", "DateStr"]).size().reset_index(name="Calls Made")
|
74 |
+
|
75 |
+
# ------------------ OEM VISITS ------------------
|
76 |
+
def get_oem_summary():
|
77 |
+
df = load_tab("OEM Visit")
|
78 |
+
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
79 |
+
df["DateStr"] = df["Date"].dt.date.astype(str)
|
80 |
+
return df.groupby(["Rep", "DateStr"]).size().reset_index(name="OEM Visits")
|
81 |
+
|
82 |
+
# ------------------ CUSTOMER REQUESTS ------------------
|
83 |
+
def get_requests():
|
84 |
+
return load_tab("Customer Requests")
|
85 |
+
|
86 |
+
# ------------------ CUSTOMER LISTINGS ------------------
|
87 |
+
def get_listings():
|
88 |
+
return load_tab("CustomerListings")
|
89 |
+
|
90 |
+
# ------------------ USERS ------------------
|
91 |
+
def get_users():
|
92 |
+
return load_tab("Users")
|
93 |
|
94 |
# ------------------ GRADIO APP ------------------
|
95 |
with gr.Blocks() as app:
|
|
|
102 |
login_msg = gr.Markdown("")
|
103 |
|
104 |
with gr.Column(visible=False) as main_ui:
|
105 |
+
gr.Markdown("## 🗂️ CarMat Dashboard")
|
106 |
+
|
107 |
+
# preload dates for field sales
|
108 |
+
df_initial = load_field_sales()
|
109 |
+
unique_dates = sorted(df_initial["DateStr"].unique(), reverse=True)
|
110 |
|
111 |
+
# --- Summary Tab ---
|
112 |
with gr.Tab("📊 Summary"):
|
113 |
date_summary = gr.Dropdown(label="Select Date", choices=unique_dates)
|
114 |
+
visits = gr.Dataframe(label="✅ Total Visits")
|
115 |
+
breakdown = gr.Dataframe(label="🏷️ Current vs. Prospect")
|
116 |
+
inactive = gr.Dataframe(label="⚠️ Inactive Reps")
|
117 |
+
date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[visits, breakdown, inactive])
|
118 |
+
|
119 |
+
# --- Orders Tab ---
|
120 |
+
with gr.Tab("📦 Orders"):
|
121 |
+
order_date = gr.Dropdown(label="Select Date", choices=unique_dates)
|
122 |
+
order_table = gr.Dataframe(label="💰 Orders Summary")
|
123 |
+
order_date.change(fn=get_order_summary, inputs=order_date, outputs=order_table)
|
124 |
+
|
125 |
+
# --- Escalations ---
|
126 |
+
with gr.Tab("🚨 Escalations"):
|
127 |
+
esc_table = gr.Dataframe(value=get_escalations, label="Second-hand Dealerships")
|
128 |
+
esc_btn = gr.Button("🔄 Refresh")
|
129 |
+
esc_btn.click(fn=get_escalations, outputs=esc_table)
|
130 |
+
|
131 |
+
# --- TeleSales ---
|
132 |
+
with gr.Tab("📞 TeleSales"):
|
133 |
+
ts_table = gr.Dataframe(value=get_telesales_summary, label="TeleSales Summary")
|
134 |
+
ts_refresh = gr.Button("🔄 Refresh TeleSales")
|
135 |
+
ts_refresh.click(fn=get_telesales_summary, outputs=ts_table)
|
136 |
+
|
137 |
+
# --- OEM Visits ---
|
138 |
+
with gr.Tab("🏭 OEM Visits"):
|
139 |
+
oem_table = gr.Dataframe(value=get_oem_summary, label="OEM Visit Summary")
|
140 |
+
oem_refresh = gr.Button("🔄 Refresh OEM")
|
141 |
+
oem_refresh.click(fn=get_oem_summary, outputs=oem_table)
|
142 |
+
|
143 |
+
# --- Requests ---
|
144 |
+
with gr.Tab("📬 Customer Requests"):
|
145 |
+
req_table = gr.Dataframe(value=get_requests, label="Customer Requests", interactive=False)
|
146 |
+
req_refresh = gr.Button("🔄 Refresh Requests")
|
147 |
+
req_refresh.click(fn=get_requests, outputs=req_table)
|
148 |
+
|
149 |
+
# --- Dealerships ---
|
150 |
+
with gr.Tab("📋 Dealership Directory"):
|
151 |
+
listings_table = gr.Dataframe(value=get_listings, label="Customer Listings")
|
152 |
+
listings_refresh = gr.Button("🔄 Refresh Listings")
|
153 |
+
listings_refresh.click(fn=get_listings, outputs=listings_table)
|
154 |
+
|
155 |
+
# --- Users ---
|
156 |
+
with gr.Tab("👤 Users"):
|
157 |
+
users_table = gr.Dataframe(value=get_users, label="Users")
|
158 |
+
users_refresh = gr.Button("🔄 Refresh Users")
|
159 |
+
users_refresh.click(fn=get_users, outputs=users_table)
|
160 |
|
161 |
def do_login(user, pw):
|
162 |
if VALID_USERS.get(user) == pw:
|
163 |
return gr.update(visible=False), gr.update(visible=True), ""
|
164 |
else:
|
165 |
+
return gr.update(visible=True), gr.update(visible=False), "❌ Invalid login."
|
166 |
|
167 |
login_btn.click(fn=do_login, inputs=[email, password], outputs=[login_ui, main_ui, login_msg])
|
168 |
|