Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import gspread
|
|
3 |
import gradio as gr
|
4 |
from oauth2client.service_account import ServiceAccountCredentials
|
5 |
from datetime import datetime
|
6 |
-
from math import radians, cos, sin, asin, sqrt
|
7 |
|
8 |
# ------------------ AUTH ------------------
|
9 |
VALID_USERS = {
|
@@ -26,111 +25,90 @@ def load_tab(sheet_name):
|
|
26 |
except:
|
27 |
return pd.DataFrame([["β οΈ Could not load sheet."]], columns=["Error"])
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
df =
|
46 |
-
df[
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
else
|
51 |
-
df["Order Value"] = pd.to_numeric(df["Order Value"], errors="coerce").fillna(0)
|
52 |
-
|
53 |
-
# Distance calc
|
54 |
-
distances = [0]
|
55 |
-
for i in range(1, len(df)):
|
56 |
-
try:
|
57 |
-
prev = df.loc[i-1, 'Location']
|
58 |
-
curr = df.loc[i, 'Location']
|
59 |
-
if pd.notna(prev) and pd.notna(curr):
|
60 |
-
distances.append(round(haversine(prev, curr), 2))
|
61 |
-
else:
|
62 |
-
distances.append(0)
|
63 |
-
except:
|
64 |
-
distances.append(0)
|
65 |
-
df["Distance Travelled (km)"] = distances
|
66 |
|
67 |
-
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
def load_telesales():
|
71 |
df = load_tab("TeleSales")
|
72 |
-
if df.empty or "Rep
|
73 |
-
return pd.DataFrame()
|
74 |
-
|
75 |
-
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
76 |
-
df["DateStr"] = df["Date"].dt.date.astype(str)
|
77 |
-
return df
|
78 |
|
79 |
-
|
80 |
-
def load_oem():
|
81 |
df = load_tab("OEM Visit")
|
82 |
if df.empty or "Rep" not in df.columns:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
return pd.DataFrame()
|
84 |
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
85 |
df["DateStr"] = df["Date"].dt.date.astype(str)
|
86 |
return df
|
87 |
|
88 |
-
# ------------------ SUMMARY ------------------
|
89 |
-
def generate_summary(date_str):
|
90 |
-
df = load_field_sales()
|
91 |
-
if df.empty:
|
92 |
-
return pd.DataFrame([["No Field Sales data"]], columns=["Message"])*5
|
93 |
-
|
94 |
-
df_day = df[df['DateStr'] == date_str.strip()]
|
95 |
-
all_reps = sorted(df['Rep'].dropna().unique())
|
96 |
-
col = "Current/Prospect Customer"
|
97 |
-
|
98 |
-
# --- Visits Breakdown
|
99 |
-
total_visits = df_day.groupby("Rep").size().reset_index(name="Total Visits")
|
100 |
-
current = df_day[df_day[col] == "Current"]
|
101 |
-
prospect = df_day[df_day[col] == "Prospect"]
|
102 |
-
breakdown = pd.DataFrame({
|
103 |
-
"Rep": all_reps,
|
104 |
-
"Current": [len(current[current["Rep"] == rep]) for rep in all_reps],
|
105 |
-
"Prospect": [len(prospect[prospect["Rep"] == rep]) for rep in all_reps]
|
106 |
-
})
|
107 |
-
inactive = pd.DataFrame({'Inactive Reps': [rep for rep in all_reps if rep not in total_visits["Rep"].tolist()]})
|
108 |
-
|
109 |
-
# --- Field Summary per Rep
|
110 |
-
rep_summary = df_day.groupby("Rep").agg({
|
111 |
-
"Order Value": "sum",
|
112 |
-
"Order Received": lambda x: (x == "Yes").sum(),
|
113 |
-
"Current/Prospect Customer": lambda x: (x == "Current").sum(),
|
114 |
-
"Distance Travelled (km)": "sum"
|
115 |
-
}).rename(columns={
|
116 |
-
"Order Value": "Total Order Value",
|
117 |
-
"Order Received": "Orders Received",
|
118 |
-
"Current/Prospect Customer": "Current Customers",
|
119 |
-
"Distance Travelled (km)": "Total Distance (km)"
|
120 |
-
}).reset_index()
|
121 |
-
|
122 |
-
# --- TeleSales Summary
|
123 |
-
df_ts = load_telesales()
|
124 |
-
df_ts_day = df_ts[df_ts['DateStr'] == date_str.strip()]
|
125 |
-
ts_summary = df_ts_day.groupby("Rep Email").size().reset_index(name="Total Calls Made") if not df_ts_day.empty else pd.DataFrame([["No Telesales"]], columns=["Info"])
|
126 |
-
|
127 |
-
# --- OEM Summary
|
128 |
-
df_oem = load_oem()
|
129 |
-
df_oem_day = df_oem[df_oem['DateStr'] == date_str.strip()]
|
130 |
-
oem_summary = df_oem_day.groupby("Rep").size().reset_index(name="Total OEM Visits") if not df_oem_day.empty else pd.DataFrame([["No OEM Visits"]], columns=["Info"])
|
131 |
-
|
132 |
-
return total_visits, breakdown, inactive, rep_summary, ts_summary, oem_summary
|
133 |
-
|
134 |
# ------------------ GRADIO APP ------------------
|
135 |
with gr.Blocks() as app:
|
136 |
with gr.Row():
|
@@ -147,18 +125,49 @@ with gr.Blocks() as app:
|
|
147 |
df_initial = load_field_sales()
|
148 |
unique_dates = sorted(df_initial["DateStr"].unique(), reverse=True) if not df_initial.empty else []
|
149 |
|
150 |
-
# ---
|
151 |
with gr.Tab("π Summary"):
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
def do_login(user, pw):
|
164 |
if VALID_USERS.get(user) == pw:
|
|
|
3 |
import gradio as gr
|
4 |
from oauth2client.service_account import ServiceAccountCredentials
|
5 |
from datetime import datetime
|
|
|
6 |
|
7 |
# ------------------ AUTH ------------------
|
8 |
VALID_USERS = {
|
|
|
25 |
except:
|
26 |
return pd.DataFrame([["β οΈ Could not load sheet."]], columns=["Error"])
|
27 |
|
28 |
+
def get_combined_orders(date_str):
|
29 |
+
df_field = load_tab("Field Sales")
|
30 |
+
df_ts = load_tab("TeleSales")
|
31 |
+
|
32 |
+
combined = []
|
33 |
+
|
34 |
+
if not df_field.empty:
|
35 |
+
df_field['Date'] = pd.to_datetime(df_field['Date'], errors='coerce')
|
36 |
+
df_field['DateStr'] = df_field['Date'].dt.date.astype(str)
|
37 |
+
df_field = df_field[df_field['DateStr'] == date_str.strip()]
|
38 |
+
df_field['Order Value'] = pd.to_numeric(df_field['Order Value'], errors='coerce').fillna(0)
|
39 |
+
df_field_orders = df_field.groupby("Rep").agg({
|
40 |
+
"Order Received": lambda x: (x == "Yes").sum(),
|
41 |
+
"Order Value": "sum"
|
42 |
+
}).reset_index().rename(columns={
|
43 |
+
"Order Received": "Orders Received",
|
44 |
+
"Order Value": "Total Order Value"
|
45 |
+
})
|
46 |
+
df_field_orders["Source"] = "Field Sales"
|
47 |
+
combined.append(df_field_orders)
|
48 |
+
|
49 |
+
if not df_ts.empty:
|
50 |
+
df_ts['Date'] = pd.to_datetime(df_ts['Date'], errors='coerce')
|
51 |
+
df_ts['DateStr'] = df_ts['Date'].dt.date.astype(str)
|
52 |
+
df_ts = df_ts[df_ts['DateStr'] == date_str.strip()]
|
53 |
+
df_ts['Order Value'] = pd.to_numeric(df_ts['Order Value'], errors='coerce').fillna(0)
|
54 |
+
df_ts_orders = df_ts.groupby("Rep").agg({
|
55 |
+
"Order Received": lambda x: (x == "Yes").sum(),
|
56 |
+
"Order Value": "sum"
|
57 |
+
}).reset_index().rename(columns={
|
58 |
+
"Order Received": "Orders Received",
|
59 |
+
"Order Value": "Total Order Value"
|
60 |
+
})
|
61 |
+
df_ts_orders["Source"] = "TeleSales"
|
62 |
+
combined.append(df_ts_orders)
|
63 |
+
|
64 |
+
if combined:
|
65 |
+
return pd.concat(combined, ignore_index=True)
|
66 |
+
else:
|
67 |
+
return pd.DataFrame([["No orders on this date"]], columns=["Message"])
|
68 |
|
69 |
+
def get_requests():
|
70 |
+
df = load_tab("Customer Requests")
|
71 |
+
return df if not df.empty else pd.DataFrame([["No requests yet."]], columns=["Message"])
|
72 |
|
73 |
+
def get_listings():
|
74 |
+
df = load_tab("CustomerListings")
|
75 |
+
return df if not df.empty else pd.DataFrame([["No listings found."]], columns=["Message"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
def get_users():
|
78 |
+
df = load_tab("Users")
|
79 |
+
return df if not df.empty else pd.DataFrame([["No users configured."]], columns=["Message"])
|
80 |
|
81 |
+
def get_telesales_summary():
|
|
|
82 |
df = load_tab("TeleSales")
|
83 |
+
if df.empty or "Rep" not in df.columns:
|
84 |
+
return pd.DataFrame([["No Telesales data available"]], columns=["Message"])
|
85 |
+
return df.groupby("Rep").size().reset_index(name="Total Calls Made")
|
|
|
|
|
|
|
86 |
|
87 |
+
def get_oem_summary():
|
|
|
88 |
df = load_tab("OEM Visit")
|
89 |
if df.empty or "Rep" not in df.columns:
|
90 |
+
return pd.DataFrame([["No OEM data available"]], columns=["Message"])
|
91 |
+
return df.groupby("Rep").size().reset_index(name="Total OEM Visits")
|
92 |
+
|
93 |
+
def get_escalations():
|
94 |
+
df = load_tab("Field Sales")
|
95 |
+
if df.empty:
|
96 |
+
return pd.DataFrame([["No data in Field Sales"]], columns=["Message"])
|
97 |
+
col = "Customer Type & Status"
|
98 |
+
if col in df.columns:
|
99 |
+
flagged = df[df[col].str.contains("Second", na=False)]
|
100 |
+
return flagged if not flagged.empty else pd.DataFrame([["No second-hand dealerships flagged."]], columns=["Message"])
|
101 |
+
else:
|
102 |
+
return pd.DataFrame([["β οΈ Column 'Customer Type & Status' not found."]], columns=["Message"])
|
103 |
+
|
104 |
+
def load_field_sales():
|
105 |
+
df = load_tab("Field Sales")
|
106 |
+
if df.empty:
|
107 |
return pd.DataFrame()
|
108 |
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
109 |
df["DateStr"] = df["Date"].dt.date.astype(str)
|
110 |
return df
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# ------------------ GRADIO APP ------------------
|
113 |
with gr.Blocks() as app:
|
114 |
with gr.Row():
|
|
|
125 |
df_initial = load_field_sales()
|
126 |
unique_dates = sorted(df_initial["DateStr"].unique(), reverse=True) if not df_initial.empty else []
|
127 |
|
128 |
+
# --- Tabs ---
|
129 |
with gr.Tab("π Summary"):
|
130 |
+
gr.Markdown("Summary content coming soon...")
|
131 |
+
|
132 |
+
with gr.Tab("π Field Sales"):
|
133 |
+
field_df = gr.Dataframe(value=load_field_sales, label="π Field Sales Records", interactive=False)
|
134 |
+
field_btn = gr.Button("π Refresh Field Sales")
|
135 |
+
field_btn.click(fn=load_field_sales, outputs=field_df)
|
136 |
+
|
137 |
+
with gr.Tab("π TeleSales"):
|
138 |
+
ts_table = gr.Dataframe(value=get_telesales_summary, label="π TeleSales Summary")
|
139 |
+
ts_refresh = gr.Button("π Refresh")
|
140 |
+
ts_refresh.click(fn=get_telesales_summary, outputs=ts_table)
|
141 |
+
|
142 |
+
with gr.Tab("π¦ Orders Summary"):
|
143 |
+
order_date = gr.Dropdown(label="Select Date", choices=unique_dates, interactive=True)
|
144 |
+
order_table = gr.Dataframe(label="π§Ύ Combined Order Summary")
|
145 |
+
order_date.change(fn=get_combined_orders, inputs=order_date, outputs=order_table)
|
146 |
+
|
147 |
+
with gr.Tab("π¨ Escalations"):
|
148 |
+
esc_table = gr.Dataframe(value=get_escalations, label="π¨ Used Dealership Escalations")
|
149 |
+
esc_btn = gr.Button("π Refresh Escalations")
|
150 |
+
esc_btn.click(fn=get_escalations, outputs=esc_table)
|
151 |
+
|
152 |
+
with gr.Tab("π OEM Visits"):
|
153 |
+
oem_table = gr.Dataframe(value=get_oem_summary, label="π OEM Visit Summary")
|
154 |
+
oem_refresh = gr.Button("π Refresh")
|
155 |
+
oem_refresh.click(fn=get_oem_summary, outputs=oem_table)
|
156 |
+
|
157 |
+
with gr.Tab("π¬ Customer Requests"):
|
158 |
+
req_table = gr.Dataframe(value=get_requests, label="π¬ Customer Requests", interactive=False)
|
159 |
+
req_refresh = gr.Button("π Refresh Requests")
|
160 |
+
req_refresh.click(fn=get_requests, outputs=req_table)
|
161 |
+
|
162 |
+
with gr.Tab("π Dealership Directory"):
|
163 |
+
listings_table = gr.Dataframe(value=get_listings, label="π Customer Listings")
|
164 |
+
listings_refresh = gr.Button("π Refresh Listings")
|
165 |
+
listings_refresh.click(fn=get_listings, outputs=listings_table)
|
166 |
+
|
167 |
+
with gr.Tab("π€ Users"):
|
168 |
+
users_table = gr.Dataframe(value=get_users, label="π₯ Users")
|
169 |
+
users_refresh = gr.Button("π Refresh Users")
|
170 |
+
users_refresh.click(fn=get_users, outputs=users_table)
|
171 |
|
172 |
def do_login(user, pw):
|
173 |
if VALID_USERS.get(user) == pw:
|