Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import gspread
|
|
3 |
import gradio as gr
|
4 |
from oauth2client.service_account import ServiceAccountCredentials
|
5 |
from datetime import datetime
|
|
|
6 |
|
7 |
# ------------------ AUTH ------------------
|
8 |
VALID_USERS = {
|
@@ -25,47 +26,94 @@ def load_tab(sheet_name):
|
|
25 |
except:
|
26 |
return pd.DataFrame([["β οΈ Could not load sheet."]], columns=["Error"])
|
27 |
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
69 |
def get_requests():
|
70 |
df = load_tab("Customer Requests")
|
71 |
return df if not df.empty else pd.DataFrame([["No requests yet."]], columns=["Message"])
|
@@ -78,22 +126,8 @@ def get_users():
|
|
78 |
df = load_tab("Users")
|
79 |
return df if not df.empty else pd.DataFrame([["No users configured."]], columns=["Message"])
|
80 |
|
81 |
-
def get_telesales_summary():
|
82 |
-
df = load_tab("TeleSales")
|
83 |
-
if df.empty or "Rep" not in df.columns:
|
84 |
-
return pd.DataFrame([["No Telesales data available"]], columns=["Message"])
|
85 |
-
return df.groupby("Rep").size().reset_index(name="Total Calls Made")
|
86 |
-
|
87 |
-
def get_oem_summary():
|
88 |
-
df = load_tab("OEM Visit")
|
89 |
-
if df.empty or "Rep" not in df.columns:
|
90 |
-
return pd.DataFrame([["No OEM data available"]], columns=["Message"])
|
91 |
-
return df.groupby("Rep").size().reset_index(name="Total OEM Visits")
|
92 |
-
|
93 |
def get_escalations():
|
94 |
-
df =
|
95 |
-
if df.empty:
|
96 |
-
return pd.DataFrame([["No data in Field Sales"]], columns=["Message"])
|
97 |
col = "Customer Type & Status"
|
98 |
if col in df.columns:
|
99 |
flagged = df[df[col].str.contains("Second", na=False)]
|
@@ -101,14 +135,6 @@ def get_escalations():
|
|
101 |
else:
|
102 |
return pd.DataFrame([["β οΈ Column 'Customer Type & Status' not found."]], columns=["Message"])
|
103 |
|
104 |
-
def load_field_sales():
|
105 |
-
df = load_tab("Field Sales")
|
106 |
-
if df.empty:
|
107 |
-
return pd.DataFrame()
|
108 |
-
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
109 |
-
df["DateStr"] = df["Date"].dt.date.astype(str)
|
110 |
-
return df
|
111 |
-
|
112 |
# ------------------ GRADIO APP ------------------
|
113 |
with gr.Blocks() as app:
|
114 |
with gr.Row():
|
@@ -122,50 +148,50 @@ with gr.Blocks() as app:
|
|
122 |
with gr.Column(visible=False) as main_ui:
|
123 |
gr.Markdown("## ποΈ CarMat Dashboard")
|
124 |
|
125 |
-
|
126 |
-
unique_dates = sorted(df_initial["DateStr"].unique(), reverse=True) if not df_initial.empty else []
|
127 |
-
|
128 |
-
# --- Tabs ---
|
129 |
with gr.Tab("π Summary"):
|
130 |
-
gr.
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
|
|
137 |
with gr.Tab("π TeleSales"):
|
138 |
-
ts_table = gr.Dataframe(
|
139 |
-
ts_refresh = gr.Button("π Refresh")
|
140 |
-
ts_refresh.click(fn=get_telesales_summary, outputs=ts_table)
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
order_table = gr.Dataframe(label="
|
145 |
-
order_date.change(fn=get_combined_orders, inputs=order_date, outputs=order_table)
|
146 |
|
|
|
147 |
with gr.Tab("π¨ Escalations"):
|
148 |
-
esc_table = gr.Dataframe(value=get_escalations, label="
|
149 |
-
esc_btn = gr.Button("π Refresh
|
150 |
esc_btn.click(fn=get_escalations, outputs=esc_table)
|
151 |
|
|
|
152 |
with gr.Tab("π OEM Visits"):
|
153 |
-
oem_table = gr.Dataframe(value=get_oem_summary, label="
|
154 |
-
oem_refresh = gr.Button("π Refresh")
|
155 |
oem_refresh.click(fn=get_oem_summary, outputs=oem_table)
|
156 |
|
|
|
157 |
with gr.Tab("π¬ Customer Requests"):
|
158 |
-
req_table = gr.Dataframe(value=get_requests, label="
|
159 |
req_refresh = gr.Button("π Refresh Requests")
|
160 |
req_refresh.click(fn=get_requests, outputs=req_table)
|
161 |
|
|
|
162 |
with gr.Tab("π Dealership Directory"):
|
163 |
-
listings_table = gr.Dataframe(value=get_listings, label="
|
164 |
listings_refresh = gr.Button("π Refresh Listings")
|
165 |
listings_refresh.click(fn=get_listings, outputs=listings_table)
|
166 |
|
|
|
167 |
with gr.Tab("π€ Users"):
|
168 |
-
users_table = gr.Dataframe(value=get_users, label="
|
169 |
users_refresh = gr.Button("π Refresh Users")
|
170 |
users_refresh.click(fn=get_users, outputs=users_table)
|
171 |
|
|
|
3 |
import gradio as gr
|
4 |
from oauth2client.service_account import ServiceAccountCredentials
|
5 |
from datetime import datetime
|
6 |
+
from math import radians, cos, sin, asin, sqrt
|
7 |
|
8 |
# ------------------ AUTH ------------------
|
9 |
VALID_USERS = {
|
|
|
26 |
except:
|
27 |
return pd.DataFrame([["β οΈ Could not load sheet."]], columns=["Error"])
|
28 |
|
29 |
+
def haversine(coord1, coord2):
|
30 |
+
try:
|
31 |
+
lon1, lat1 = map(radians, map(float, coord1.split(',')[::-1]))
|
32 |
+
lon2, lat2 = map(radians, map(float, coord2.split(',')[::-1]))
|
33 |
+
dlon = lon2 - lon1
|
34 |
+
dlat = lat2 - lat1
|
35 |
+
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
|
36 |
+
c = 2 * asin(sqrt(a))
|
37 |
+
return round(6371 * c, 2)
|
38 |
+
except:
|
39 |
+
return 0.0
|
40 |
+
|
41 |
+
# ------------------ FIELD SALES ------------------
|
42 |
+
def load_field_sales():
|
43 |
+
df = load_tab("Field Sales")
|
44 |
+
if df.empty:
|
45 |
+
return pd.DataFrame(columns=["Date", "Rep", "Order Value", "Order Received", "Location", "DateStr", "KM Travelled"])
|
46 |
+
|
47 |
+
df['Date'] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
48 |
+
df = df.dropna(subset=["Date"])
|
49 |
+
df['DateStr'] = df['Date'].dt.date.astype(str)
|
50 |
+
df["Order Value"] = pd.to_numeric(df.get("Order Value", 0), errors="coerce").fillna(0)
|
51 |
+
|
52 |
+
df["KM Travelled"] = 0.0
|
53 |
+
for rep in df["Rep"].unique():
|
54 |
+
rep_df = df[df["Rep"] == rep].sort_values(by="Date")
|
55 |
+
prev_coord = None
|
56 |
+
for idx, row in rep_df.iterrows():
|
57 |
+
curr_coord = row.get("Location", "")
|
58 |
+
if prev_coord:
|
59 |
+
df.at[idx, "KM Travelled"] = haversine(prev_coord, curr_coord)
|
60 |
+
prev_coord = curr_coord
|
61 |
+
|
62 |
+
return df
|
63 |
+
|
64 |
+
def get_field_summary():
|
65 |
+
df = load_field_sales()
|
66 |
+
if df.empty:
|
67 |
+
return pd.DataFrame([["No data available"]], columns=["Message"])
|
68 |
+
summary = df.groupby("Rep").agg({
|
69 |
+
"Order Value": "sum",
|
70 |
+
"Order Received": lambda x: (x == "Yes").sum(),
|
71 |
+
"KM Travelled": "sum"
|
72 |
+
}).reset_index().rename(columns={
|
73 |
+
"Order Value": "Total Order Value",
|
74 |
+
"Order Received": "Orders Received"
|
75 |
+
})
|
76 |
+
return summary
|
77 |
+
|
78 |
+
# ------------------ TELESALES ------------------
|
79 |
+
def get_telesales_summary():
|
80 |
+
df = load_tab("TeleSales")
|
81 |
+
if df.empty or "Rep" not in df.columns:
|
82 |
+
return pd.DataFrame([["No data available"]], columns=["Message"])
|
83 |
+
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
84 |
+
df["DateStr"] = df["Date"].dt.date.astype(str)
|
85 |
+
df["Order Value"] = pd.to_numeric(df.get("Order Value", 0), errors="coerce").fillna(0)
|
86 |
+
|
87 |
+
summary = df.groupby("Rep").agg({
|
88 |
+
"Order Value": "sum",
|
89 |
+
"Order Received": lambda x: (x == "Yes").sum()
|
90 |
+
}).reset_index().rename(columns={
|
91 |
+
"Order Value": "Total Order Value",
|
92 |
+
"Order Received": "Orders Received"
|
93 |
+
})
|
94 |
+
return summary
|
95 |
+
|
96 |
+
# ------------------ COMBINED ORDERS ------------------
|
97 |
+
def get_combined_orders():
|
98 |
+
fs = get_field_summary()
|
99 |
+
ts = get_telesales_summary()
|
100 |
+
|
101 |
+
fs["Source"] = "Field Sales"
|
102 |
+
ts["Source"] = "TeleSales"
|
103 |
+
|
104 |
+
combined = pd.concat([fs, ts], ignore_index=True)
|
105 |
+
return combined[["Rep", "Orders Received", "Total Order Value", "Source"]].sort_values(by="Total Order Value", ascending=False)
|
106 |
+
|
107 |
+
# ------------------ OEM VISITS ------------------
|
108 |
+
def get_oem_summary():
|
109 |
+
df = load_tab("OEM Visit")
|
110 |
+
if df.empty or "Rep" not in df.columns:
|
111 |
+
return pd.DataFrame([["No data available"]], columns=["Message"])
|
112 |
+
df["Date"] = pd.to_datetime(df.get("Date", datetime.today()), errors='coerce')
|
113 |
+
df["DateStr"] = df["Date"].dt.date.astype(str)
|
114 |
+
return df.groupby(["Rep", "DateStr"]).size().reset_index(name="OEM Visits")
|
115 |
|
116 |
+
# ------------------ OTHER TABS ------------------
|
117 |
def get_requests():
|
118 |
df = load_tab("Customer Requests")
|
119 |
return df if not df.empty else pd.DataFrame([["No requests yet."]], columns=["Message"])
|
|
|
126 |
df = load_tab("Users")
|
127 |
return df if not df.empty else pd.DataFrame([["No users configured."]], columns=["Message"])
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
def get_escalations():
|
130 |
+
df = load_field_sales()
|
|
|
|
|
131 |
col = "Customer Type & Status"
|
132 |
if col in df.columns:
|
133 |
flagged = df[df[col].str.contains("Second", na=False)]
|
|
|
135 |
else:
|
136 |
return pd.DataFrame([["β οΈ Column 'Customer Type & Status' not found."]], columns=["Message"])
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
# ------------------ GRADIO APP ------------------
|
139 |
with gr.Blocks() as app:
|
140 |
with gr.Row():
|
|
|
148 |
with gr.Column(visible=False) as main_ui:
|
149 |
gr.Markdown("## ποΈ CarMat Dashboard")
|
150 |
|
151 |
+
# --- Summary Tab ---
|
|
|
|
|
|
|
152 |
with gr.Tab("π Summary"):
|
153 |
+
summary_table = gr.Dataframe(label="Combined Orders", value=get_combined_orders)
|
154 |
|
155 |
+
# --- Field Sales Tab ---
|
156 |
+
with gr.Tab("π£οΈ Field Sales"):
|
157 |
+
fs_table = gr.Dataframe(label="Field Sales Summary", value=get_field_summary)
|
158 |
+
fs_raw = gr.Dataframe(label="Raw Field Sales", value=load_field_sales)
|
159 |
|
160 |
+
# --- Telesales Tab ---
|
161 |
with gr.Tab("π TeleSales"):
|
162 |
+
ts_table = gr.Dataframe(label="TeleSales Summary", value=get_telesales_summary)
|
|
|
|
|
163 |
|
164 |
+
# --- Orders Tab ---
|
165 |
+
with gr.Tab("π¦ Orders"):
|
166 |
+
order_table = gr.Dataframe(label="All Orders Combined", value=get_combined_orders)
|
|
|
167 |
|
168 |
+
# --- Escalations ---
|
169 |
with gr.Tab("π¨ Escalations"):
|
170 |
+
esc_table = gr.Dataframe(value=get_escalations, label="Second-hand Dealerships")
|
171 |
+
esc_btn = gr.Button("π Refresh")
|
172 |
esc_btn.click(fn=get_escalations, outputs=esc_table)
|
173 |
|
174 |
+
# --- OEM Visits ---
|
175 |
with gr.Tab("π OEM Visits"):
|
176 |
+
oem_table = gr.Dataframe(value=get_oem_summary, label="OEM Visit Summary")
|
177 |
+
oem_refresh = gr.Button("π Refresh OEM")
|
178 |
oem_refresh.click(fn=get_oem_summary, outputs=oem_table)
|
179 |
|
180 |
+
# --- Requests ---
|
181 |
with gr.Tab("π¬ Customer Requests"):
|
182 |
+
req_table = gr.Dataframe(value=get_requests, label="Customer Requests", interactive=False)
|
183 |
req_refresh = gr.Button("π Refresh Requests")
|
184 |
req_refresh.click(fn=get_requests, outputs=req_table)
|
185 |
|
186 |
+
# --- Dealership Listings ---
|
187 |
with gr.Tab("π Dealership Directory"):
|
188 |
+
listings_table = gr.Dataframe(value=get_listings, label="Customer Listings")
|
189 |
listings_refresh = gr.Button("π Refresh Listings")
|
190 |
listings_refresh.click(fn=get_listings, outputs=listings_table)
|
191 |
|
192 |
+
# --- Users ---
|
193 |
with gr.Tab("π€ Users"):
|
194 |
+
users_table = gr.Dataframe(value=get_users, label="Users")
|
195 |
users_refresh = gr.Button("π Refresh Users")
|
196 |
users_refresh.click(fn=get_users, outputs=users_table)
|
197 |
|