Spaces:
Sleeping
Sleeping
File size: 10,200 Bytes
44e7320 106b612 44e7320 106b612 44e7320 106b612 d685333 d975ba4 cf4a816 7074721 106b612 44e7320 ed3b18b dfbe477 ed3b18b f68916e ed3b18b f68916e ed3b18b c959952 f68916e ed3b18b f68916e 35f7fbb ed3b18b 35f7fbb f68916e 35f7fbb f68916e 35f7fbb 65e2013 f68916e 65e2013 0b258de 44e7320 ed3b18b 65e2013 f68916e 65e2013 44e7320 a137762 44e7320 ed3b18b a137762 ed3b18b a137762 44e7320 a137762 87d485d 106b612 ed3b18b 35f7fbb ed3b18b 87d485d ed3b18b 87d485d 35f7fbb 87d485d ed3b18b 87d485d 44e7320 ed3b18b d685333 106b612 d685333 4bd42b3 f68916e d685333 f68916e d685333 f68916e d685333 19384fe c959952 19384fe c959952 19384fe 0009227 19384fe 0009227 19384fe 0009227 19384fe 0009227 19384fe 106b612 d685333 6cca50e 106b612 6cca50e 106b612 6cca50e d685333 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import pandas as pd
import gspread
import gradio as gr
import plotly.express as px
from oauth2client.service_account import ServiceAccountCredentials
# ------------------ AUTH ------------------
VALID_USERS = {
"[email protected]": "Pass.123",
"[email protected]": "Pass.123",
"[email protected]": "Pass.123",
"[email protected]": "Pass.123"
}
# ------------------ GOOGLE SHEET SETUP ------------------
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("bid4carsappsheetdash.json", scope)
client = gspread.authorize(creds)
sheet_url = "https://docs.google.com/spreadsheets/d/1eUXhcfWd3jtNmZC6U_Dr2F7obQcK81I4YrK-fKEbkyU"
# ------------------ DATA REFRESH FUNCTION ------------------
def refresh_data():
sheet = client.open_by_url(sheet_url).worksheet("Calls2")
data = sheet.get_all_records()
df = pd.DataFrame(data)
df['Timestamp'] = pd.to_datetime(df['Date'].astype(str) + " " + df['Time'].astype(str), errors='coerce')
df['Date'] = pd.to_datetime(df['Date'], errors='coerce').dt.date.astype(str)
df['Time'] = pd.to_datetime(df['Time'], format='%H:%M:%S', errors='coerce').dt.time
gps_split = df['GPS'].astype(str).str.split(',', expand=True)
df['Latitude'] = pd.to_numeric(gps_split[0], errors='coerce')
df['Longitude'] = pd.to_numeric(gps_split[1], errors='coerce')
df = df.dropna(subset=['Date', 'Rep Name', 'Latitude', 'Longitude'])
df = df[(df['Latitude'] != 0) & (df['Longitude'] != 0)]
df = df.sort_values(by=['Rep Name', 'Timestamp'])
df['Time Diff (min)'] = df.groupby(['Rep Name', 'Date'])['Timestamp'].diff().dt.total_seconds().div(60).fillna(0)
df['Visit Order'] = df.groupby(['Rep Name', 'Date']).cumcount() + 1
return df
# ------------------ SUMMARY GENERATION ------------------
def generate_summary(date_str):
df = refresh_data()
all_reps = sorted(df['Rep Name'].dropna().unique())
day_df = df[df['Date'] == date_str]
active = day_df.groupby('Rep Name').size().reset_index(name='Total Visits')
active_list = active['Rep Name'].tolist()
inactive_list = [rep for rep in all_reps if rep not in active_list]
inactive_df = pd.DataFrame({'Inactive Reps': inactive_list})
return active, inactive_df
def get_reps(date_str):
df = refresh_data()
reps = df[df['Date'] == date_str]['Rep Name'].dropna().unique()
return gr.update(choices=sorted(reps))
# ------------------ MAP & TABLE VIEW ------------------
def show_map(date_str, rep):
df = refresh_data()
subset = df[(df['Date'] == date_str) & (df['Rep Name'] == rep)]
if subset.empty:
return "No valid data", None
subset = subset.sort_values(by='Timestamp').copy()
subset['Visit Order'] = range(1, len(subset) + 1)
center_lat = subset['Latitude'].mean()
center_lon = subset['Longitude'].mean()
fig = px.line_mapbox(
subset,
lat="Latitude", lon="Longitude",
hover_name="Dealership",
hover_data={"Time": True, "Time Diff (min)": True, "Visit Order": True},
height=700,
zoom=13,
center={"lat": center_lat, "lon": center_lon}
)
scatter = px.scatter_mapbox(
subset,
lat="Latitude", lon="Longitude",
color="Visit Order",
hover_name="Dealership",
hover_data=["Time", "Time Diff (min)"],
color_continuous_scale="Bluered"
)
for trace in scatter.data:
fig.add_trace(trace)
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[0]]),
lat="Latitude", lon="Longitude",
text=["Start"], color_discrete_sequence=["green"]).data[0])
fig.add_trace(px.scatter_mapbox(
pd.DataFrame([subset.iloc[-1]]),
lat="Latitude", lon="Longitude",
text=["End"], color_discrete_sequence=["red"]).data[0])
fig.update_layout(mapbox_style="open-street-map", title=f"๐ {rep}'s Route on {date_str}")
table = subset[[
'Visit Order', 'Dealership', 'Time', 'Time Diff (min)',
'Interaction Type', 'Product'
]].rename(columns={
'Dealership': '๐งญ Dealer',
'Time': '๐ Time',
'Time Diff (min)': 'โฑ๏ธ Time Spent',
'Interaction Type': '๐ Interaction',
'Product': '๐ผ Product Type'
})
total_time = round(table['โฑ๏ธ Time Spent'].sum(), 2)
summary_row = pd.DataFrame([{
'Visit Order': '',
'๐งญ Dealer': f"๐งฎ Total Time: {total_time} min",
'๐ Time': '',
'โฑ๏ธ Time Spent': '',
'๐ Interaction': '',
'๐ผ Product Type': ''
}])
table = pd.concat([table, summary_row], ignore_index=True)
return table, fig
# ------------------ GRADIO UI ------------------
with gr.Blocks() as app:
with gr.Row():
with gr.Column(visible=True) as login_ui:
gr.Markdown("## ๐ Login Required")
email = gr.Textbox(label="Email")
password = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login")
login_msg = gr.Markdown("")
with gr.Column(visible=False) as main_ui:
gr.Markdown("## ๐๏ธ Bid4Cars FieldApp Tracker")
df_initial = refresh_data()
unique_dates = sorted(df_initial['Date'].unique(), reverse=True)
with gr.Tab("๐ Summary"):
date_summary = gr.Dropdown(label="Select Date", choices=unique_dates)
active_table = gr.Dataframe(label="โ
Active Reps (with total visits)")
inactive_table = gr.Dataframe(label="โ ๏ธ Inactive Reps")
date_summary.change(fn=generate_summary, inputs=date_summary, outputs=[active_table, inactive_table])
with gr.Tab("๐ค KAM's"):
with gr.Row():
with gr.Column(scale=1):
date_picker = gr.Dropdown(label="Select Date", choices=unique_dates)
rep_picker = gr.Dropdown(label="Select Rep")
btn = gr.Button("Show Route")
with gr.Column(scale=2):
table = gr.Dataframe(label="Call Table")
map_plot = gr.Plot(label="Map")
date_picker.change(fn=get_reps, inputs=date_picker, outputs=rep_picker)
btn.click(fn=show_map, inputs=[date_picker, rep_picker], outputs=[table, map_plot])
with gr.Tab("๐ Reports"):
with gr.Row():
report_type = gr.Radio(choices=["Daily", "Weekly", "Monthly"], label="Report Type", value="Daily")
report_date = gr.Textbox(label="Select Date (YYYY-MM-DD)", placeholder="2025-05-27", type="text")
download_btn = gr.Button("๐ฅ Download CSV")
report_table = gr.Dataframe(label="๐ Report Summary")
report_info = gr.Markdown()
download_file = gr.File(label="๐ Download Link")
def generate_report(report_type, report_date):
df = refresh_data()
try:
date_obj = pd.to_datetime(report_date, errors='coerce')
except:
return pd.DataFrame(), "โ ๏ธ Invalid date format.", None
if pd.isnull(date_obj):
return pd.DataFrame(), "โ ๏ธ Date could not be parsed.", None
if report_type == "Daily":
title = f"๐ Report for {date_obj.strftime('%B %d, %Y')}"
mask = df['Date'] == str(date_obj.date())
elif report_type == "Weekly":
start = date_obj - pd.Timedelta(days=date_obj.weekday())
end = start + pd.Timedelta(days=6)
title = f"๐ Week of {start.strftime('%b %d')} โ {end.strftime('%b %d')}, {start.year}"
mask = (pd.to_datetime(df['Date']) >= start) & (pd.to_datetime(df['Date']) <= end)
elif report_type == "Monthly":
title = f"๐ Report for {date_obj.strftime('%B %Y')}"
mask = pd.to_datetime(df['Date']).dt.to_period("M") == pd.to_datetime(date_obj).to_period("M")
filtered = df[mask]
if filtered.empty:
return pd.DataFrame(), "โ ๏ธ No data found for that range.", None
summary = filtered[[
'Date', 'Rep Name', 'Dealership', 'Time',
'Interaction Type', 'Product', 'Time Diff (min)'
]].sort_values(by=["Rep Name", "Date"])
insights = f"""
### {title}
### ๐ Insights:
- **Total Visits:** {len(filtered)}
- **Unique Reps:** {filtered['Rep Name'].nunique()}
- **Most Active Rep:** {filtered['Rep Name'].value_counts().idxmax()}
- **Most Visited Dealership:** {filtered['Dealership'].value_counts().idxmax()}
- **Avg Time Between Visits:** {round(filtered['Time Diff (min)'].mean(), 2)} min
"""
filename = f"Bid4Cars_Report_{report_type}_{report_date}.csv".replace(" ", "_")
summary.to_csv(filename, index=False)
return summary, insights, filename
report_date.change(fn=generate_report, inputs=[report_type, report_date], outputs=[report_table, report_info, download_file])
report_type.change(fn=generate_report, inputs=[report_type, report_date], outputs=[report_table, report_info, download_file])
download_btn.click(fn=generate_report, inputs=[report_type, report_date], outputs=[report_table, report_info, download_file])
def do_login(user, pw):
if VALID_USERS.get(user) == pw:
return gr.update(visible=False), gr.update(visible=True), ""
else:
return gr.update(visible=True), gr.update(visible=False), "โ Invalid email or password."
login_btn.click(fn=do_login, inputs=[email, password], outputs=[login_ui, main_ui, login_msg])
app.launch()
|