File size: 7,613 Bytes
06faff1
44e7320
 
93be3f3
1051212
7074721
06faff1
0222536
 
dfbe477
d5bcf89
f68916e
06faff1
0222536
 
25ec218
1051212
0222536
 
 
 
 
 
 
 
 
06faff1
 
1051212
 
 
 
0222536
 
991e2f4
0222536
6903ce6
0222536
2f4c490
06faff1
0222536
bc61590
6903ce6
bc61590
 
0222536
 
6903ce6
0222536
bc61590
2f4c490
0222536
 
 
 
 
 
 
 
991e2f4
0222536
991e2f4
0222536
06faff1
0222536
 
 
 
 
2f4c490
bc61590
06faff1
0222536
bc61590
0222536
991e2f4
6903ce6
991e2f4
0222536
 
 
2f4c490
6903ce6
 
 
 
 
 
0222536
 
 
6903ce6
0222536
6903ce6
 
0222536
6903ce6
 
0222536
 
 
6903ce6
0222536
 
 
 
6903ce6
0222536
bc61590
 
 
 
0222536
 
 
06faff1
6903ce6
06faff1
bc61590
06faff1
2f4c490
0222536
 
06faff1
bc61590
06faff1
2f4c490
0222536
 
 
bc61590
0222536
06faff1
2f4c490
0222536
 
 
 
 
 
 
6903ce6
0222536
6903ce6
06faff1
2f4c490
0222536
 
 
 
 
 
 
 
 
 
 
 
 
 
2f4c490
0222536
 
 
6903ce6
 
0222536
6903ce6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta

# -------------------- AUTH --------------------
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("deep-mile-461309-t8-0e90103411e0.json", scope)
client = gspread.authorize(creds)
sheet_url = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"

# -------------------- UTILS --------------------
def normalize_columns(df):
    df.columns = df.columns.str.strip().str.title()  # e.g. “appointment date ” → “Appointment Date”
    return df

def load_sheet(sheet_name):
    try:
        sheet = client.open_by_url(sheet_url).worksheet(sheet_name)
        df = pd.DataFrame(sheet.get_all_records())
        df = normalize_columns(df)
        return df
    except Exception as e:
        return pd.DataFrame([{"Error": str(e)}])

def get_current_week_range():
    today = datetime.now()
    start = today - timedelta(days=today.weekday())
    end = start + timedelta(days=6)
    return start.date(), end.date()

def filter_week(df, date_column, rep_column=None, rep=None):
    df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
    start, end = get_current_week_range()
    filtered = df[(df[date_column] >= start) & (df[date_column] <= end)]
    if rep:
        filtered = filtered[filtered[rep_column] == rep]
    return filtered

def filter_date(df, date_column, rep_column, y, m, d, rep):
    try:
        target = datetime(int(y), int(m), int(d)).date()
    except:
        return pd.DataFrame([{"Error": "Invalid date input"}])
    df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
    filtered = df[df[date_column] == target]
    if rep:
        filtered = filtered[filtered[rep_column] == rep]
    return filtered

# -------------------- REPORT FUNCTIONS --------------------
def get_calls(rep=None):
    df = load_sheet("Calls")
    if "Call Date" not in df.columns:
        return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
    return filter_week(df, "Call Date", "Rep", rep)

def get_appointments(rep=None):
    df = load_sheet("Appointments")
    if "Appointment Date" not in df.columns:
        return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
    return filter_week(df, "Appointment Date", "Rep", rep)

def search_calls_by_date(y, m, d, rep):
    df = load_sheet("Calls")
    if "Call Date" not in df.columns:
        return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
    return filter_date(df, "Call Date", "Rep", y, m, d, rep)

def search_appointments_by_date(y, m, d, rep):
    df = load_sheet("Appointments")
    if "Appointment Date" not in df.columns:
        return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
    return filter_date(df, "Appointment Date", "Rep", y, m, d, rep)

def get_leads_detail():
    df = load_sheet("AllocatedLeads")
    # normalize expected names if necessary:
    df = df.rename(columns={"Assigned Rep": "Assigned Rep", "Company Name": "Company Name"})
    if "Assigned Rep" not in df.columns or "Company Name" not in df.columns:
        return pd.DataFrame([{"Error": "Missing 'Assigned Rep' or 'Company Name' column"}])
    return df

def get_leads_summary():
    df = get_leads_detail()
    if "Error" in df.columns:
        return df
    # count number of leads per rep
    summary = df.groupby("Assigned Rep").size().reset_index(name="Leads Count")
    return summary

# -------------------- INSIGHTS (Top Performers) --------------------
def compute_insights():
    calls = get_calls()
    appts = get_appointments()
    leads = get_leads_detail()

    top_calls = calls.groupby("Rep").size().idxmax() if not calls.empty else "N/A"
    top_appts = appts.groupby("Rep").size().idxmax() if not appts.empty else "N/A"
    top_leads = leads.groupby("Assigned Rep").size().idxmax() if "Assigned Rep" in leads.columns else "N/A"

    insights = pd.DataFrame([
        {"Metric": "Most Calls This Week",        "Rep": top_calls},
        {"Metric": "Most Appointments This Week", "Rep": top_appts},
        {"Metric": "Most Leads Allocated",        "Rep": top_leads},
    ])
    return insights

# -------------------- DROPDOWN OPTIONS --------------------
def rep_options(sheet_name, rep_col):
    df = load_sheet(sheet_name)
    if rep_col in df.columns:
        return sorted(df[rep_col].dropna().unique().tolist())
    return []

# -------------------- UI LAYOUT --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
    gr.Markdown("# 📆 Graffiti Admin Dashboard")

    with gr.Tab("Calls Report"):
        rep_calls = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Calls", "Rep"), allow_custom_value=True)
        calls_btn = gr.Button("Load Current Week Calls")
        calls_table = gr.Dataframe()
        calls_btn.click(fn=get_calls, inputs=rep_calls, outputs=calls_table)

        gr.Markdown("### 🔍 Search Calls by Specific Date")
        y1, m1, d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
        rep1 = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Calls", "Rep"), allow_custom_value=True)
        calls_date_btn = gr.Button("Search Calls by Date")
        calls_date_table = gr.Dataframe()
        calls_date_btn.click(fn=search_calls_by_date, inputs=[y1, m1, d1, rep1], outputs=calls_date_table)

    with gr.Tab("Appointments Report"):
        rep_appt = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Appointments", "Rep"), allow_custom_value=True)
        appt_btn = gr.Button("Load Current Week Appointments")
        appt_summary = gr.Dataframe(label="📊 Weekly Appointments Summary by Rep")
        appt_table   = gr.Dataframe()
        appt_btn.click(
            fn=lambda rep: (get_appointments(rep).groupby("Rep").size().reset_index(name="Count"), 
                            get_appointments(rep)),
            inputs=rep_appt,
            outputs=[appt_summary, appt_table]
        )

        gr.Markdown("### 🔍 Search Appointments by Specific Date")
        y2, m2, d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
        rep2 = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Appointments", "Rep"), allow_custom_value=True)
        appt_date_btn = gr.Button("Search Appointments by Date")
        appt_date_summary = gr.Dataframe(label="📊 Appointments Summary for Date by Rep")
        appt_date_table   = gr.Dataframe()
        appt_date_btn.click(
            fn=lambda y,m,d,rep: (
                search_appointments_by_date(y,m,d,rep).groupby("Rep").size().reset_index(name="Count"),
                search_appointments_by_date(y,m,d,rep)
            ),
            inputs=[y2, m2, d2, rep2],
            outputs=[appt_date_summary, appt_date_table]
        )

    with gr.Tab("Appointed Leads"):
        leads_btn    = gr.Button("View Appointed Leads")
        leads_summary= gr.Dataframe(label="📊 Leads Count by Rep")
        leads_detail = gr.Dataframe(label="🔎 Detailed Leads")
        leads_btn.click(
            fn=lambda: (get_leads_summary(), get_leads_detail()),
            outputs=[leads_summary, leads_detail]
        )

    with gr.Tab("Insights"):
        insights_btn = gr.Button("Generate Insights")
        insights_tbl = gr.Dataframe()
        insights_btn.click(fn=compute_insights, outputs=insights_tbl)

app.launch()