Spaces:
Sleeping
Sleeping
File size: 7,613 Bytes
06faff1 44e7320 93be3f3 1051212 7074721 06faff1 0222536 dfbe477 d5bcf89 f68916e 06faff1 0222536 25ec218 1051212 0222536 06faff1 1051212 0222536 991e2f4 0222536 6903ce6 0222536 2f4c490 06faff1 0222536 bc61590 6903ce6 bc61590 0222536 6903ce6 0222536 bc61590 2f4c490 0222536 991e2f4 0222536 991e2f4 0222536 06faff1 0222536 2f4c490 bc61590 06faff1 0222536 bc61590 0222536 991e2f4 6903ce6 991e2f4 0222536 2f4c490 6903ce6 0222536 6903ce6 0222536 6903ce6 0222536 6903ce6 0222536 6903ce6 0222536 6903ce6 0222536 bc61590 0222536 06faff1 6903ce6 06faff1 bc61590 06faff1 2f4c490 0222536 06faff1 bc61590 06faff1 2f4c490 0222536 bc61590 0222536 06faff1 2f4c490 0222536 6903ce6 0222536 6903ce6 06faff1 2f4c490 0222536 2f4c490 0222536 6903ce6 0222536 6903ce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta
# -------------------- AUTH --------------------
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_name("deep-mile-461309-t8-0e90103411e0.json", scope)
client = gspread.authorize(creds)
sheet_url = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
# -------------------- UTILS --------------------
def normalize_columns(df):
df.columns = df.columns.str.strip().str.title() # e.g. “appointment date ” → “Appointment Date”
return df
def load_sheet(sheet_name):
try:
sheet = client.open_by_url(sheet_url).worksheet(sheet_name)
df = pd.DataFrame(sheet.get_all_records())
df = normalize_columns(df)
return df
except Exception as e:
return pd.DataFrame([{"Error": str(e)}])
def get_current_week_range():
today = datetime.now()
start = today - timedelta(days=today.weekday())
end = start + timedelta(days=6)
return start.date(), end.date()
def filter_week(df, date_column, rep_column=None, rep=None):
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
start, end = get_current_week_range()
filtered = df[(df[date_column] >= start) & (df[date_column] <= end)]
if rep:
filtered = filtered[filtered[rep_column] == rep]
return filtered
def filter_date(df, date_column, rep_column, y, m, d, rep):
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date input"}])
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
filtered = df[df[date_column] == target]
if rep:
filtered = filtered[filtered[rep_column] == rep]
return filtered
# -------------------- REPORT FUNCTIONS --------------------
def get_calls(rep=None):
df = load_sheet("Calls")
if "Call Date" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
return filter_week(df, "Call Date", "Rep", rep)
def get_appointments(rep=None):
df = load_sheet("Appointments")
if "Appointment Date" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
return filter_week(df, "Appointment Date", "Rep", rep)
def search_calls_by_date(y, m, d, rep):
df = load_sheet("Calls")
if "Call Date" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
return filter_date(df, "Call Date", "Rep", y, m, d, rep)
def search_appointments_by_date(y, m, d, rep):
df = load_sheet("Appointments")
if "Appointment Date" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
return filter_date(df, "Appointment Date", "Rep", y, m, d, rep)
def get_leads_detail():
df = load_sheet("AllocatedLeads")
# normalize expected names if necessary:
df = df.rename(columns={"Assigned Rep": "Assigned Rep", "Company Name": "Company Name"})
if "Assigned Rep" not in df.columns or "Company Name" not in df.columns:
return pd.DataFrame([{"Error": "Missing 'Assigned Rep' or 'Company Name' column"}])
return df
def get_leads_summary():
df = get_leads_detail()
if "Error" in df.columns:
return df
# count number of leads per rep
summary = df.groupby("Assigned Rep").size().reset_index(name="Leads Count")
return summary
# -------------------- INSIGHTS (Top Performers) --------------------
def compute_insights():
calls = get_calls()
appts = get_appointments()
leads = get_leads_detail()
top_calls = calls.groupby("Rep").size().idxmax() if not calls.empty else "N/A"
top_appts = appts.groupby("Rep").size().idxmax() if not appts.empty else "N/A"
top_leads = leads.groupby("Assigned Rep").size().idxmax() if "Assigned Rep" in leads.columns else "N/A"
insights = pd.DataFrame([
{"Metric": "Most Calls This Week", "Rep": top_calls},
{"Metric": "Most Appointments This Week", "Rep": top_appts},
{"Metric": "Most Leads Allocated", "Rep": top_leads},
])
return insights
# -------------------- DROPDOWN OPTIONS --------------------
def rep_options(sheet_name, rep_col):
df = load_sheet(sheet_name)
if rep_col in df.columns:
return sorted(df[rep_col].dropna().unique().tolist())
return []
# -------------------- UI LAYOUT --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
gr.Markdown("# 📆 Graffiti Admin Dashboard")
with gr.Tab("Calls Report"):
rep_calls = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Calls", "Rep"), allow_custom_value=True)
calls_btn = gr.Button("Load Current Week Calls")
calls_table = gr.Dataframe()
calls_btn.click(fn=get_calls, inputs=rep_calls, outputs=calls_table)
gr.Markdown("### 🔍 Search Calls by Specific Date")
y1, m1, d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
rep1 = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Calls", "Rep"), allow_custom_value=True)
calls_date_btn = gr.Button("Search Calls by Date")
calls_date_table = gr.Dataframe()
calls_date_btn.click(fn=search_calls_by_date, inputs=[y1, m1, d1, rep1], outputs=calls_date_table)
with gr.Tab("Appointments Report"):
rep_appt = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Appointments", "Rep"), allow_custom_value=True)
appt_btn = gr.Button("Load Current Week Appointments")
appt_summary = gr.Dataframe(label="📊 Weekly Appointments Summary by Rep")
appt_table = gr.Dataframe()
appt_btn.click(
fn=lambda rep: (get_appointments(rep).groupby("Rep").size().reset_index(name="Count"),
get_appointments(rep)),
inputs=rep_appt,
outputs=[appt_summary, appt_table]
)
gr.Markdown("### 🔍 Search Appointments by Specific Date")
y2, m2, d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
rep2 = gr.Dropdown(label="Optional Rep Filter", choices=rep_options("Appointments", "Rep"), allow_custom_value=True)
appt_date_btn = gr.Button("Search Appointments by Date")
appt_date_summary = gr.Dataframe(label="📊 Appointments Summary for Date by Rep")
appt_date_table = gr.Dataframe()
appt_date_btn.click(
fn=lambda y,m,d,rep: (
search_appointments_by_date(y,m,d,rep).groupby("Rep").size().reset_index(name="Count"),
search_appointments_by_date(y,m,d,rep)
),
inputs=[y2, m2, d2, rep2],
outputs=[appt_date_summary, appt_date_table]
)
with gr.Tab("Appointed Leads"):
leads_btn = gr.Button("View Appointed Leads")
leads_summary= gr.Dataframe(label="📊 Leads Count by Rep")
leads_detail = gr.Dataframe(label="🔎 Detailed Leads")
leads_btn.click(
fn=lambda: (get_leads_summary(), get_leads_detail()),
outputs=[leads_summary, leads_detail]
)
with gr.Tab("Insights"):
insights_btn = gr.Button("Generate Insights")
insights_tbl = gr.Dataframe()
insights_btn.click(fn=compute_insights, outputs=insights_tbl)
app.launch()
|