Spaces:
Sleeping
Sleeping
File size: 8,224 Bytes
06faff1 44e7320 93be3f3 1051212 7074721 06faff1 5a3508e dfbe477 d5bcf89 f68916e 06faff1 25ec218 6903ce6 5a3508e 25ec218 1051212 06faff1 1051212 5a3508e 25ec218 5a3508e 991e2f4 5a3508e 6903ce6 5a3508e 2f4c490 06faff1 5a3508e 25ec218 5a3508e bc61590 6903ce6 bc61590 5a3508e 6903ce6 5a3508e bc61590 2f4c490 5a3508e 991e2f4 25ec218 991e2f4 5a3508e 06faff1 5a3508e 2f4c490 bc61590 06faff1 25ec218 bc61590 5a3508e 991e2f4 5a3508e 6903ce6 991e2f4 25ec218 2f4c490 6903ce6 5a3508e 6903ce6 5a3508e 6903ce6 5a3508e 6903ce6 5a3508e 6903ce6 5a3508e 6903ce6 bc61590 5a3508e 06faff1 6903ce6 06faff1 bc61590 06faff1 5a3508e 2f4c490 5a3508e 06faff1 bc61590 06faff1 2f4c490 5a3508e bc61590 5a3508e 06faff1 5a3508e 2f4c490 5a3508e 6903ce6 5a3508e 6903ce6 06faff1 2f4c490 5a3508e 2f4c490 25ec218 6903ce6 5a3508e 6903ce6 5a3508e 6903ce6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import pandas as pd
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from datetime import datetime, timedelta
# -------------------- AUTH --------------------
scope = [
"https://spreadsheets.google.com/feeds",
"https://www.googleapis.com/auth/drive"
]
creds = ServiceAccountCredentials.from_json_keyfile_name(
"deep-mile-461309-t8-0e90103411e0.json",
scope
)
client = gspread.authorize(creds)
sheet_url = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
# -------------------- UTILS --------------------
def normalize_header(raw_header):
# strip and titleize
return [h.strip().title() for h in raw_header]
def load_sheet(sheet_name: str) -> pd.DataFrame:
ws = client.open_by_url(sheet_url).worksheet(sheet_name)
all_vals = ws.get_all_values()
if not all_vals or len(all_vals) < 2:
return pd.DataFrame()
header = normalize_header(all_vals[0])
rows = all_vals[1:]
df = pd.DataFrame(rows, columns=header)
return df
def get_current_week_range():
today = datetime.now()
start = today - timedelta(days=today.weekday())
end = start + timedelta(days=6)
return start.date(), end.date()
# -------------------- CALLS --------------------
def get_calls(rep=None):
df = load_sheet("Calls")
if "Call Date" not in df:
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
df["Call Date"] = pd.to_datetime(df["Call Date"], errors="coerce").dt.date
start, end = get_current_week_range()
filtered = df[(df["Call Date"] >= start) & (df["Call Date"] <= end)]
if rep:
filtered = filtered[filtered["Rep"] == rep]
return filtered
def search_calls_by_date(y, m, d, rep):
df = load_sheet("Calls")
if "Call Date" not in df:
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date input"}])
df["Call Date"] = pd.to_datetime(df["Call Date"], errors="coerce").dt.date
filtered = df[df["Call Date"] == target]
if rep:
filtered = filtered[filtered["Rep"] == rep]
return filtered
# -------------------- APPOINTMENTS --------------------
def appointments_detail(rep=None):
df = load_sheet("Appointments")
if "Appointment Date" not in df:
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
df["Appointment Date"] = pd.to_datetime(df["Appointment Date"], errors="coerce").dt.date
start, end = get_current_week_range()
filtered = df[(df["Appointment Date"] >= start) & (df["Appointment Date"] <= end)]
if rep:
filtered = filtered[filtered["Rep"] == rep]
return filtered
def appointments_summary(rep=None):
det = appointments_detail(rep)
if "Error" in det.columns:
return det
return det.groupby("Rep") \
.size() \
.reset_index(name="Appointment Count")
def search_appointments_by_date(y, m, d, rep):
df = load_sheet("Appointments")
if "Appointment Date" not in df:
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}])
try:
target = datetime(int(y), int(m), int(d)).date()
except:
return pd.DataFrame([{"Error": "Invalid date input"}])
df["Appointment Date"] = pd.to_datetime(df["Appointment Date"], errors="coerce").dt.date
filtered = df[df["Appointment Date"] == target]
if rep:
filtered = filtered[filtered["Rep"] == rep]
return filtered
# -------------------- LEADS --------------------
def get_leads_detail():
df = load_sheet("AllocatedLeads")
if "Assigned Rep" not in df or "Company Name" not in df:
return pd.DataFrame([{"Error": "Missing 'Assigned Rep' or 'Company Name' column"}])
return df
def get_leads_summary():
df = get_leads_detail()
if "Error" in df.columns:
return df
return df.groupby("Assigned Rep") \
.size() \
.reset_index(name="Leads Count")
# -------------------- INSIGHTS --------------------
def compute_insights():
calls = get_calls()
appt = appointments_detail()
leads = get_leads_detail()
def top(df, col):
return df[col].value_counts().idxmax() if not df.empty else "N/A"
return pd.DataFrame([
{"Metric": "Most Calls This Week", "Rep": top(calls, "Rep")},
{"Metric": "Most Appointments This Week", "Rep": top(appt, "Rep")},
{"Metric": "Most Leads Allocated", "Rep": top(leads, "Assigned Rep")},
])
# -------------------- DROPDOWN OPTIONS --------------------
def rep_options(sheet_name, rep_col):
df = load_sheet(sheet_name)
return sorted(df[rep_col].dropna().unique().tolist()) if rep_col in df.columns else []
# -------------------- UI LAYOUT --------------------
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
gr.Markdown("# π Graffiti Admin Dashboard")
# Calls Report
with gr.Tab("Calls Report"):
rep_calls = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Calls", "Rep"),
allow_custom_value=True)
calls_btn = gr.Button("Load Current Week Calls")
calls_table = gr.Dataframe()
calls_btn.click(fn=get_calls, inputs=rep_calls, outputs=calls_table)
gr.Markdown("### π Search Calls by Specific Date")
y1, m1, d1 = gr.Textbox("Year"), gr.Textbox("Month"), gr.Textbox("Day")
rep1 = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Calls", "Rep"),
allow_custom_value=True)
calls_date_btn = gr.Button("Search Calls by Date")
calls_date_table = gr.Dataframe()
calls_date_btn.click(fn=search_calls_by_date,
inputs=[y1, m1, d1, rep1],
outputs=calls_date_table)
# Appointments Report
with gr.Tab("Appointments Report"):
rep_appt = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Appointments", "Rep"),
allow_custom_value=True)
load_btn = gr.Button("Load Current Week Appointments")
appt_sum = gr.Dataframe(label="π Weekly Appointments Summary by Rep")
appt_det = gr.Dataframe(label="π Detailed Appointments")
load_btn.click(
fn=lambda rep: (appointments_summary(rep), appointments_detail(rep)),
inputs=rep_appt,
outputs=[appt_sum, appt_det]
)
gr.Markdown("### π Search Appointments by Specific Date")
y2, m2, d2 = gr.Textbox("Year"), gr.Textbox("Month"), gr.Textbox("Day")
rep2 = gr.Dropdown("Optional Rep Filter",
choices=rep_options("Appointments", "Rep"),
allow_custom_value=True)
date_btn = gr.Button("Search Appointments by Date")
date_sum = gr.Dataframe(label="π Appointments Summary for Date by Rep")
date_det = gr.Dataframe(label="π Detailed Appointments")
def by_date(y, m, d, rep):
df = search_appointments_by_date(y, m, d, rep)
if "Error" in df.columns:
return df, df
return (
df.groupby("Rep").size().reset_index(name="Appointment Count"),
df
)
date_btn.click(fn=by_date,
inputs=[y2, m2, d2, rep2],
outputs=[date_sum, date_det])
# Appointed Leads
with gr.Tab("Appointed Leads"):
leads_btn = gr.Button("View Appointed Leads")
leads_sum = gr.Dataframe(label="π Leads Count by Rep")
leads_det = gr.Dataframe(label="π Detailed Leads")
leads_btn.click(
fn=lambda: (get_leads_summary(), get_leads_detail()),
outputs=[leads_sum, leads_det]
)
# Insights
with gr.Tab("Insights"):
insights_btn = gr.Button("Generate Insights")
insights_tbl = gr.Dataframe()
insights_btn.click(fn=compute_insights, outputs=insights_tbl)
app.launch()
|