Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import gspread | |
from gspread_dataframe import set_with_dataframe | |
from oauth2client.service_account import ServiceAccountCredentials | |
from datetime import datetime, timedelta | |
# -------------------- CONFIG -------------------- | |
SHEET_URL = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ" | |
CREDS_JSON = "deep-mile-461309-t8-0e90103411e0.json" | |
# -------------------- AUTH -------------------- | |
scope = ["https://spreadsheets.google.com/feeds", | |
"https://www.googleapis.com/auth/drive"] | |
creds = ServiceAccountCredentials.from_json_keyfile_name(CREDS_JSON, scope) | |
client = gspread.authorize(creds) | |
# -------------------- WORKSHEET HELPERS -------------------- | |
def open_ws(name_substr): | |
""" | |
Try to open a worksheet: | |
1. exact match on title | |
2. first sheet whose title contains name_substr (case-insensitive) | |
""" | |
sh = client.open_by_url(SHEET_URL) | |
# 1) exact | |
try: | |
return sh.worksheet(name_substr) | |
except gspread.WorksheetNotFound: | |
pass | |
# 2) contains substring | |
for ws in sh.worksheets(): | |
if name_substr.lower() in ws.title.lower(): | |
return ws | |
raise gspread.WorksheetNotFound(f"No tab matching '{name_substr}'") | |
def load_sheet_df(tab_name): | |
"""Load & normalize the sheet named by tab_name (substring).""" | |
try: | |
ws = open_ws(tab_name) | |
df = pd.DataFrame(ws.get_all_records()) | |
df.columns = df.columns.str.strip().str.title() | |
return df | |
except Exception as e: | |
return pd.DataFrame([{"Error": str(e)}]) | |
def find_rep_column(df): | |
"""Find the first column whose header contains 'rep' (case-insensitive).""" | |
for c in df.columns: | |
if "rep" in c.lower(): | |
return c | |
return None | |
def rep_options(tab_name): | |
"""Return a list of all unique reps in the given tab (or empty list).""" | |
df = load_sheet_df(tab_name) | |
rep_col = find_rep_column(df) | |
if rep_col: | |
return sorted(df[rep_col].dropna().unique().tolist()) | |
return [] | |
# -------------------- DATE FILTERS -------------------- | |
def get_current_week_range(): | |
today = datetime.now() | |
start = today - timedelta(days=today.weekday()) | |
return start.date(), (start + timedelta(days=6)).date() | |
def filter_week(df, date_col, rep_col, rep): | |
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date | |
start, end = get_current_week_range() | |
out = df[(df[date_col] >= start) & (df[date_col] <= end)] | |
if rep and rep_col in out.columns: | |
out = out[out[rep_col] == rep] | |
return out | |
def filter_date(df, date_col, rep_col, y, m, d, rep): | |
try: | |
target = datetime(int(y), int(m), int(d)).date() | |
except: | |
return pd.DataFrame([{"Error":"Invalid date"}]) | |
df[date_col] = pd.to_datetime(df[date_col], errors="coerce").dt.date | |
out = df[df[date_col] == target] | |
if rep and rep_col in out.columns: | |
out = out[out[rep_col] == rep] | |
return out | |
# -------------------- CALLS -------------------- | |
def get_calls(rep=None): | |
df = load_sheet_df("Calls") | |
if "Call Date" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Call Date' column"}]) | |
return filter_week(df, "Call Date", find_rep_column(df), rep) | |
def get_calls_summary(rep=None): | |
df = get_calls(rep) | |
if "Error" in df.columns or df.empty: | |
return df | |
col = find_rep_column(df) | |
return df.groupby(col).size().reset_index(name="Count") | |
def search_calls_by_date(y,m,d,rep): | |
df = load_sheet_df("Calls") | |
if "Call Date" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Call Date' column"}]) | |
return filter_date(df, "Call Date", find_rep_column(df), y,m,d, rep) | |
# -------------------- APPOINTMENTS -------------------- | |
def get_appointments(rep=None): | |
df = load_sheet_df("Appointments") | |
if "Appointment Date" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Appointment Date' column"}]) | |
return filter_week(df, "Appointment Date", find_rep_column(df), rep) | |
def get_appointments_summary(rep=None): | |
df = get_appointments(rep) | |
if "Error" in df.columns or df.empty: | |
return df | |
col = find_rep_column(df) | |
return df.groupby(col).size().reset_index(name="Count") | |
def search_appointments_by_date(y,m,d,rep): | |
df = load_sheet_df("Appointments") | |
if "Appointment Date" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Appointment Date' column"}]) | |
return filter_date(df, "Appointment Date", find_rep_column(df), y,m,d, rep) | |
# -------------------- APPOINTED LEADS -------------------- | |
def get_leads_detail(): | |
return load_sheet_df("Leads") | |
def get_leads_summary(): | |
df = get_leads_detail() | |
col = find_rep_column(df) or "Assigned Rep" | |
if col not in df.columns: | |
return pd.DataFrame([{"Error":"Missing rep column in leads"}]) | |
return df.groupby(col).size().reset_index(name="Leads Count") | |
# -------------------- INSIGHTS -------------------- | |
def compute_insights(): | |
calls = get_calls() | |
appts = get_appointments() | |
leads = get_leads_detail() | |
def top(df): | |
col = find_rep_column(df) | |
if "Error" in df.columns or df.empty or not col: | |
return "N/A" | |
s = df.groupby(col).size() | |
return s.idxmax() if not s.empty else "N/A" | |
return pd.DataFrame([ | |
{"Metric":"Most Calls This Week", "Rep": top(calls)}, | |
{"Metric":"Most Appointments This Week", "Rep": top(appts)}, | |
{"Metric":"Most Leads Allocated", "Rep": top(leads)}, | |
]) | |
# -------------------- USER MANAGEMENT -------------------- | |
def load_users(): | |
df = load_sheet_df("Users") | |
want = [ | |
"Id","Email","Name","Business","Role", | |
"Daily Phone Call Target","Daily Phone Appointment Target", | |
"Daily Quote Number Target","Daily Quote Revenue Target", | |
"Weekly Phone Call Target","Weekly Phone Appointment Target", | |
"Weekly Quote Number Target","Weekly Quote Revenue Target", | |
"Monthly Phone Call Target","Monthly Phone Appointment Target", | |
"Monthly Quote Number Target","Monthly Quote Revenue Target", | |
"Monthly Sales Revenue Target" | |
] | |
cols = [c for c in want if c in df.columns] | |
return df[cols] | |
def save_users(df): | |
ws = open_ws("Users") | |
ws.clear() | |
set_with_dataframe(ws, df) | |
return "β Users saved!" | |
# -------------------- GRADIO UI -------------------- | |
with gr.Blocks(title="Graffiti Admin Dashboard") as app: | |
gr.Markdown("# π Graffiti Admin Dashboard") | |
# --- Calls --- | |
with gr.Tab("Calls Report"): | |
rc = rep_options("Calls") | |
rep_calls = gr.Dropdown(rc or ["(no reps found)"], | |
label="Optional Rep Filter", | |
allow_custom_value=True) | |
calls_btn = gr.Button("Load Current Week Calls") | |
calls_sum = gr.Dataframe(label="π Calls by Rep") | |
calls_det = gr.Dataframe(label="π Detailed Calls") | |
calls_btn.click(lambda r: (get_calls_summary(r), get_calls(r)), | |
inputs=rep_calls, outputs=[calls_sum, calls_det]) | |
gr.Markdown("### π Search Calls by Date") | |
y1,m1,d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day") | |
rep1 = gr.Dropdown(rc or ["(no reps found)"], | |
label="Optional Rep Filter", allow_custom_value=True) | |
calls_dt_btn = gr.Button("Search Calls by Date") | |
calls_dt_tbl = gr.Dataframe() | |
calls_dt_btn.click(search_calls_by_date, | |
inputs=[y1,m1,d1,rep1], outputs=calls_dt_tbl) | |
# --- Appointments --- | |
with gr.Tab("Appointments Report"): | |
ra = rep_options("Appointments") | |
rep_appt = gr.Dropdown(ra or ["(no reps found)"], | |
label="Optional Rep Filter", | |
allow_custom_value=True) | |
appt_btn = gr.Button("Load Current Week Appointments") | |
appt_sum = gr.Dataframe(label="π Appts by Rep") | |
appt_det = gr.Dataframe(label="π Detailed Appts") | |
appt_btn.click(lambda r: (get_appointments_summary(r), get_appointments(r)), | |
inputs=rep_appt, outputs=[appt_sum, appt_det]) | |
gr.Markdown("### π Search Appts by Date") | |
y2,m2,d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day") | |
rep2 = gr.Dropdown(ra or ["(no reps found)"], | |
label="Optional Rep Filter", allow_custom_value=True) | |
appt_dt_btn = gr.Button("Search Appts by Date") | |
appt_dt_sum = gr.Dataframe(label="π Appts by Rep") | |
appt_dt_det = gr.Dataframe(label="π Detailed Appts") | |
appt_dt_btn.click(search_appointments_by_date, | |
inputs=[y2,m2,d2,rep2], | |
outputs=appt_dt_det) | |
# --- Appointed Leads --- | |
with gr.Tab("Appointed Leads"): | |
leads_btn = gr.Button("View Appointed Leads") | |
leads_sum = gr.Dataframe(label="π Leads Count by Rep") | |
leads_det = gr.Dataframe(label="π Detailed Leads") | |
leads_btn.click(lambda: (get_leads_summary(), get_leads_detail()), | |
outputs=[leads_sum, leads_det]) | |
# --- Insights --- | |
with gr.Tab("Insights"): | |
ins_btn = gr.Button("Generate Insights") | |
ins_tbl = gr.Dataframe() | |
ins_btn.click(compute_insights, outputs=ins_tbl) | |
# --- User Management --- | |
with gr.Tab("User Management"): | |
gr.Markdown("## π€ Manage Users β edit/add/remove, then Save") | |
users_df = gr.Dataframe(load_users(), interactive=True) | |
save_btn = gr.Button("Save Users") | |
save_out = gr.Textbox() | |
save_btn.click(save_users, inputs=users_df, outputs=save_out) | |
app.launch() | |