Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import gspread | |
from gspread_dataframe import set_with_dataframe | |
from oauth2client.service_account import ServiceAccountCredentials | |
from datetime import datetime, timedelta | |
# -------------------- CONFIG -------------------- | |
SHEET_URL = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ" | |
CREDS_JSON = "deep-mile-461309-t8-0e90103411e0.json" | |
# -------------------- AUTH -------------------- | |
scope = [ | |
"https://spreadsheets.google.com/feeds", | |
"https://www.googleapis.com/auth/drive" | |
] | |
creds = ServiceAccountCredentials.from_json_keyfile_name(CREDS_JSON, scope) | |
client = gspread.authorize(creds) | |
# -------------------- SHEET LOAD/UTILS -------------------- | |
def normalize_columns(df): | |
df.columns = df.columns.str.strip().str.title() | |
return df | |
def load_sheet_df(sheet_name): | |
try: | |
ws = client.open_by_url(SHEET_URL).worksheet(sheet_name) | |
records= ws.get_all_records() | |
df = pd.DataFrame(records) | |
return normalize_columns(df) | |
except Exception as e: | |
# return a one-row DF with an Error column | |
return pd.DataFrame([{"Error": str(e)}]) | |
# -------------------- DATE FILTERS -------------------- | |
def get_current_week_range(): | |
today = datetime.now() | |
start = today - timedelta(days=today.weekday()) | |
end = start + timedelta(days=6) | |
return start.date(), end.date() | |
def filter_week(df, date_column, rep_column=None, rep=None): | |
df[date_column] = pd.to_datetime(df[date_column], errors="coerce").dt.date | |
start,end = get_current_week_range() | |
out = df[(df[date_column] >= start) & (df[date_column] <= end)] | |
if rep and rep in out.columns: | |
out = out[out[rep_column] == rep] | |
return out | |
def filter_date(df, date_column, rep_column, y,m,d, rep): | |
try: | |
target = datetime(int(y), int(m), int(d)).date() | |
except: | |
return pd.DataFrame([{"Error":"Invalid date"}]) | |
df[date_column] = pd.to_datetime(df[date_column], errors="coerce").dt.date | |
out = df[df[date_column] == target] | |
if rep and rep in out.columns: | |
out = out[out[rep_column] == rep] | |
return out | |
# -------------------- REPORT DATA -------------------- | |
def get_calls(rep=None): | |
df = load_sheet_df("Calls") | |
if "Call Date" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Call Date' column"}]) | |
return filter_week(df, "Call Date", "Rep", rep) | |
def get_calls_summary(rep=None): | |
df = get_calls(rep) | |
if "Error" in df.columns or df.empty: | |
return df | |
return ( | |
df.groupby("Rep") | |
.size() | |
.reset_index(name="Count") | |
.sort_values("Count", ascending=False) | |
) | |
def search_calls_by_date(y,m,d, rep): | |
df = load_sheet_df("Calls") | |
if "Call Date" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Call Date' column"}]) | |
return filter_date(df, "Call Date", "Rep", y,m,d, rep) | |
def get_appointments(rep=None): | |
df = load_sheet_df("Appointments") | |
if "Appointment Date" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Appointment Date' column"}]) | |
return filter_week(df, "Appointment Date", "Rep", rep) | |
def get_appointments_summary(rep=None): | |
df = get_appointments(rep) | |
if "Error" in df.columns or df.empty: | |
return df | |
return ( | |
df.groupby("Rep") | |
.size() | |
.reset_index(name="Count") | |
.sort_values("Count", ascending=False) | |
) | |
def search_appointments_by_date(y,m,d, rep): | |
df = load_sheet_df("Appointments") | |
if "Appointment Date" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Appointment Date' column"}]) | |
return filter_date(df, "Appointment Date", "Rep", y,m,d, rep) | |
def get_leads_detail(): | |
df = load_sheet_df("AllocatedLeads") | |
# rename if needed | |
df = df.rename(columns={"Assigned Rep":"Assigned Rep"}) | |
if "Assigned Rep" not in df.columns: | |
return pd.DataFrame([{"Error":"Missing 'Assigned Rep' col"}]) | |
return df | |
def get_leads_summary(): | |
df = get_leads_detail() | |
if "Error" in df.columns: | |
return df | |
return df.groupby("Assigned Rep").size().reset_index(name="Leads Count") | |
# -------------------- INSIGHTS -------------------- | |
def compute_insights(): | |
calls = get_calls() | |
appts = get_appointments() | |
leads = get_leads_detail() | |
def top_rep(df, col): | |
if "Error" in df.columns or df.empty: | |
return "N/A" | |
counts = df.groupby(col).size() | |
if counts.empty: | |
return "N/A" | |
return counts.idxmax() | |
top_calls = top_rep(calls, "Rep") | |
top_appts = top_rep(appts, "Rep") | |
# unify column name for leads | |
leads = leads.rename(columns={"Assigned Rep":"Rep"}) | |
top_leads = top_rep(leads, "Rep") | |
return pd.DataFrame([ | |
{"Metric":"Most Calls This Week", "Rep":top_calls}, | |
{"Metric":"Most Appointments This Week", "Rep":top_appts}, | |
{"Metric":"Most Leads Allocated", "Rep":top_leads}, | |
]) | |
# -------------------- USER MANAGEMENT -------------------- | |
def load_users(): | |
df = load_sheet_df("userAccess") # your actual tab name | |
# pick & title-case only the cols you want | |
wanted = [ | |
"Id","Email","Name","Business","Role", | |
"Daily Phone Call Target","Daily Phone Appointment Target", | |
"Daily Quote Number Target","Daily Quote Revenue Target", | |
"Weekly Phone Call Target","Weekly Phone Appointment Target", | |
"Weekly Quote Number Target","Weekly Quote Revenue Target", | |
"Monthly Phone Call Target","Monthly Phone Appointment Target", | |
"Monthly Quote Number Target","Monthly Quote Revenue Target", | |
"Monthly Sales Revenue Target" | |
] | |
exist = [c for c in wanted if c in df.columns] | |
return df[exist] | |
def save_users(df): | |
ws = client.open_by_url(SHEET_URL).worksheet("userAccess") | |
ws.clear() | |
set_with_dataframe(ws, df) | |
return "β Users saved!" | |
# -------------------- GRADIO UI -------------------- | |
with gr.Blocks(title="π Graffiti Field App Admin Dashboard") as app: | |
gr.Markdown("# π Graffiti Field App Admin Dashboard") | |
# βββ Calls Report βββββββββββββββββββββββββββββ | |
with gr.Tab("Calls Report"): | |
rep_calls = gr.Dropdown( | |
label="Optional Rep Filter", | |
choices=load_sheet_df("Calls")["Rep"].dropna().unique().tolist(), | |
allow_custom_value=True | |
) | |
calls_btn = gr.Button("Load Current Week Calls") | |
calls_summary = gr.Dataframe(label="π Calls by Rep") | |
calls_table = gr.Dataframe(label="π Detailed Calls") | |
calls_btn.click( | |
fn=lambda r: (get_calls_summary(r), get_calls(r)), | |
inputs=rep_calls, | |
outputs=[calls_summary, calls_table] | |
) | |
gr.Markdown("### π Search Calls by Specific Date") | |
y1,m1,d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day") | |
rep1 = gr.Dropdown( | |
label="Optional Rep Filter", | |
choices=load_sheet_df("Calls")["Rep"].dropna().unique().tolist(), | |
allow_custom_value=True | |
) | |
calls_date_btn = gr.Button("Search Calls by Date") | |
calls_date_table = gr.Dataframe() | |
calls_date_btn.click( | |
fn=search_calls_by_date, | |
inputs=[y1,m1,d1,rep1], | |
outputs=calls_date_table | |
) | |
# βββ Appointments Report βββββββββββββββββββββ | |
with gr.Tab("Appointments Report"): | |
rep_appt = gr.Dropdown( | |
label="Optional Rep Filter", | |
choices=load_sheet_df("Appointments")["Rep"].dropna().unique().tolist(), | |
allow_custom_value=True | |
) | |
appt_btn = gr.Button("Load Current Week Appointments") | |
appt_summary = gr.Dataframe(label="π Appts by Rep") | |
appt_table = gr.Dataframe(label="π Detailed Appointments") | |
appt_btn.click( | |
fn=lambda r: (get_appointments_summary(r), get_appointments(r)), | |
inputs=rep_appt, | |
outputs=[appt_summary, appt_table] | |
) | |
gr.Markdown("### π Search Appointments by Specific Date") | |
y2,m2,d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day") | |
rep2 = gr.Dropdown( | |
label="Optional Rep Filter", | |
choices=load_sheet_df("Appointments")["Rep"].dropna().unique().tolist(), | |
allow_custom_value=True | |
) | |
appt_date_btn = gr.Button("Search Appts by Date") | |
appt_date_summary = gr.Dataframe(label="π Appts Summary by Rep") | |
appt_date_table = gr.Dataframe() | |
appt_date_btn.click( | |
fn=lambda y,m,d,r: ( | |
(lambda df: df.groupby("Rep").size().reset_index(name="Count"))(search_appointments_by_date(y,m,d,r)), | |
search_appointments_by_date(y,m,d,r) | |
), | |
inputs=[y2,m2,d2,rep2], | |
outputs=[appt_date_summary, appt_date_table] | |
) | |
# βββ Appointed Leads ββββββββββββββββββββββββββ | |
with gr.Tab("Appointed Leads"): | |
leads_btn = gr.Button("View Appointed Leads") | |
leads_summary = gr.Dataframe(label="π Leads Count by Rep") | |
leads_detail = gr.Dataframe(label="π Detailed Leads") | |
leads_btn.click( | |
fn=lambda: (get_leads_summary(), get_leads_detail()), | |
outputs=[leads_summary, leads_detail] | |
) | |
# βββ Insights βββββββββββββββββββββββββββββββββ | |
with gr.Tab("Insights"): | |
insights_btn = gr.Button("Generate Insights") | |
insights_tbl = gr.Dataframe() | |
insights_btn.click(fn=compute_insights, outputs=insights_tbl) | |
# βββ User Management ββββββββββββββββββββββββββ | |
with gr.Tab("User Management"): | |
gr.Markdown("## π€ Manage Users\nEdit/add/remove rows below, then click **Save Users**.") | |
users_tbl = gr.Dataframe(value=load_users(), interactive=True) | |
save_btn = gr.Button("Save Users") | |
status = gr.Textbox() | |
save_btn.click(fn=save_users, inputs=users_tbl, outputs=status) | |
# end Blocks | |
app.launch() | |