Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,206 +10,200 @@ scope = [
|
|
10 |
"https://www.googleapis.com/auth/drive"
|
11 |
]
|
12 |
creds = ServiceAccountCredentials.from_json_keyfile_name(
|
13 |
-
"deep-mile-461309-t8-0e90103411e0.json",
|
14 |
-
scope
|
15 |
)
|
16 |
client = gspread.authorize(creds)
|
17 |
-
sheet_url =
|
|
|
|
|
18 |
|
19 |
# -------------------- UTILS --------------------
|
20 |
-
def normalize_columns(df):
|
21 |
df.columns = df.columns.str.strip().str.title()
|
22 |
return df
|
23 |
|
24 |
-
|
|
|
25 |
try:
|
26 |
-
ws = client.open_by_url(sheet_url).worksheet(
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
except Exception as e:
|
30 |
return pd.DataFrame([{"Error": str(e)}])
|
31 |
|
|
|
32 |
def get_current_week_range():
|
33 |
today = datetime.now()
|
34 |
start = today - timedelta(days=today.weekday())
|
35 |
end = start + timedelta(days=6)
|
36 |
return start.date(), end.date()
|
37 |
|
38 |
-
def filter_week(df, date_col, rep_col=None, rep=None):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
out = out[out[rep_col] == rep]
|
44 |
return out
|
45 |
|
46 |
-
def filter_date(df, date_col, rep_col, y, m, d, rep):
|
47 |
try:
|
48 |
target = datetime(int(y), int(m), int(d)).date()
|
49 |
except:
|
50 |
return pd.DataFrame([{"Error": "Invalid date input"}])
|
51 |
-
|
|
|
|
|
52 |
out = df[df[date_col] == target]
|
53 |
-
if rep:
|
54 |
out = out[out[rep_col] == rep]
|
55 |
return out
|
56 |
|
57 |
# -------------------- REPORT FUNCTIONS --------------------
|
58 |
def get_calls(rep=None):
|
59 |
df = load_sheet("Calls")
|
60 |
-
if "Call Date" not in df:
|
61 |
-
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
|
62 |
return filter_week(df, "Call Date", "Rep", rep)
|
63 |
|
64 |
-
def
|
|
|
|
|
|
|
|
|
65 |
df = load_sheet("Calls")
|
66 |
-
|
67 |
-
return pd.DataFrame([{"Error": "Missing 'Call Date' column"}])
|
68 |
-
return filter_date(df, "Call Date", "Rep", y, m, d, rep)
|
69 |
|
70 |
-
|
71 |
-
def upcoming_summary_and_detail(rep=None):
|
72 |
-
df = load_sheet("Appointments")
|
73 |
-
if "Appointment Date" not in df:
|
74 |
-
return pd.DataFrame([{"Error": "Missing 'Appointment Date' column"}]), pd.DataFrame()
|
75 |
-
df["Appointment Date"] = pd.to_datetime(df["Appointment Date"], errors="coerce").dt.date
|
76 |
-
today = datetime.now().date()
|
77 |
-
future = df[df["Appointment Date"] >= today]
|
78 |
-
if rep:
|
79 |
-
future = future[future["Rep"] == rep]
|
80 |
-
summary = future.groupby("Rep").size().reset_index(name="Appointment Count")
|
81 |
-
return summary, future
|
82 |
-
|
83 |
-
def search_appointments_by_date(y, m, d, rep):
|
84 |
df = load_sheet("Appointments")
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
except:
|
90 |
-
return pd.DataFrame([{"Error": "Invalid date input"}]), pd.DataFrame()
|
91 |
-
df["Appointment Date"] = pd.to_datetime(df["Appointment Date"], errors="coerce").dt.date
|
92 |
-
out = df[df["Appointment Date"] == target]
|
93 |
-
if rep:
|
94 |
-
out = out[out["Rep"] == rep]
|
95 |
-
summary = out.groupby("Rep").size().reset_index(name="Appointment Count")
|
96 |
-
return summary, out
|
97 |
-
|
98 |
-
# -------------------- APPOINTED LEADS --------------------
|
99 |
def get_leads_detail():
|
100 |
df = load_sheet("AllocatedLeads")
|
101 |
-
if "Assigned Rep" not in df or "Company Name" not in df:
|
102 |
-
return pd.DataFrame([{"Error": "Missing 'Assigned Rep' or 'Company Name' column"}])
|
103 |
return df
|
104 |
|
105 |
def get_leads_summary():
|
106 |
df = get_leads_detail()
|
107 |
-
if "
|
108 |
-
return
|
109 |
return df.groupby("Assigned Rep").size().reset_index(name="Leads Count")
|
110 |
|
111 |
# -------------------- INSIGHTS --------------------
|
112 |
def compute_insights():
|
113 |
calls = get_calls()
|
114 |
-
|
115 |
leads = get_leads_detail()
|
116 |
def top(df, col):
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
{"Metric": "Most Calls This Week", "Rep": top(calls, "Rep")},
|
120 |
-
{"Metric": "Most
|
121 |
{"Metric": "Most Leads Allocated", "Rep": top(leads, "Assigned Rep")},
|
122 |
])
|
|
|
123 |
|
124 |
-
# --------------------
|
125 |
-
def
|
126 |
-
df = load_sheet(
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
return df[["Name", "Email", "Company", "Target Figures"]]
|
131 |
|
|
|
132 |
def save_users(df):
|
133 |
ws = client.open_by_url(sheet_url).worksheet("User")
|
|
|
|
|
134 |
ws.clear()
|
135 |
-
|
136 |
-
|
137 |
-
return df
|
138 |
|
139 |
-
# --------------------
|
140 |
-
def rep_options(sheet, col):
|
141 |
-
df = load_sheet(sheet)
|
142 |
-
return sorted(df[col].dropna().unique().tolist()) if col in df else []
|
143 |
-
|
144 |
-
# -------------------- UI LAYOUT --------------------
|
145 |
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
|
146 |
gr.Markdown("# π Graffiti Admin Dashboard")
|
147 |
|
148 |
-
# Calls Report Tab
|
149 |
with gr.Tab("Calls Report"):
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
154 |
|
155 |
gr.Markdown("### π Search Calls by Specific Date")
|
156 |
-
y1,
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
# Appointments Report Tab
|
163 |
with gr.Tab("Appointments Report"):
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
gr.Markdown("### π Search Appointments by Specific Date")
|
171 |
-
y2,
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
with gr.Tab("Appointed Leads"):
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
outputs=[
|
187 |
|
188 |
-
# Insights Tab
|
189 |
with gr.Tab("Insights"):
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
|
194 |
-
# User Management Tab
|
195 |
with gr.Tab("User Management"):
|
196 |
-
gr.Markdown("
|
197 |
-
users_df =
|
198 |
-
|
199 |
-
label="Users",
|
200 |
-
interactive=True
|
201 |
-
)
|
202 |
save_btn = gr.Button("Save Users")
|
203 |
-
|
204 |
-
|
205 |
-
def on_save(df):
|
206 |
-
saved = save_users(pd.DataFrame(df))
|
207 |
-
return "β
Users saved!", saved
|
208 |
-
|
209 |
-
save_btn.click(
|
210 |
-
fn=on_save,
|
211 |
-
inputs=users_df,
|
212 |
-
outputs=[save_status, users_df]
|
213 |
-
)
|
214 |
|
215 |
-
app.launch()
|
|
|
10 |
"https://www.googleapis.com/auth/drive"
|
11 |
]
|
12 |
creds = ServiceAccountCredentials.from_json_keyfile_name(
|
13 |
+
"deep-mile-461309-t8-0e90103411e0.json", scope
|
|
|
14 |
)
|
15 |
client = gspread.authorize(creds)
|
16 |
+
sheet_url = (
|
17 |
+
"https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
|
18 |
+
)
|
19 |
|
20 |
# -------------------- UTILS --------------------
|
21 |
+
def normalize_columns(df: pd.DataFrame) -> pd.DataFrame:
|
22 |
df.columns = df.columns.str.strip().str.title()
|
23 |
return df
|
24 |
|
25 |
+
# Replace get_all_records() to avoid duplicate-header errors
|
26 |
+
def load_sheet(sheet_name: str) -> pd.DataFrame:
|
27 |
try:
|
28 |
+
ws = client.open_by_url(sheet_url).worksheet(sheet_name)
|
29 |
+
all_values = ws.get_all_values()
|
30 |
+
if not all_values:
|
31 |
+
return pd.DataFrame()
|
32 |
+
headers = [h.strip().title() for h in all_values[0]]
|
33 |
+
data = all_values[1:]
|
34 |
+
return pd.DataFrame(data, columns=headers)
|
35 |
except Exception as e:
|
36 |
return pd.DataFrame([{"Error": str(e)}])
|
37 |
|
38 |
+
# date utilities
|
39 |
def get_current_week_range():
|
40 |
today = datetime.now()
|
41 |
start = today - timedelta(days=today.weekday())
|
42 |
end = start + timedelta(days=6)
|
43 |
return start.date(), end.date()
|
44 |
|
45 |
+
def filter_week(df: pd.DataFrame, date_col: str, rep_col: str = None, rep=None):
|
46 |
+
if date_col not in df.columns:
|
47 |
+
return df
|
48 |
+
df[date_col] = pd.to_datetime(df[date_col], errors='coerce').dt.date
|
49 |
+
start, end = get_current_week_range()
|
50 |
+
out = df[(df[date_col] >= start) & (df[date_col] <= end)]
|
51 |
+
if rep and rep_col in df.columns:
|
52 |
out = out[out[rep_col] == rep]
|
53 |
return out
|
54 |
|
55 |
+
def filter_date(df: pd.DataFrame, date_col: str, rep_col: str, y, m, d, rep):
|
56 |
try:
|
57 |
target = datetime(int(y), int(m), int(d)).date()
|
58 |
except:
|
59 |
return pd.DataFrame([{"Error": "Invalid date input"}])
|
60 |
+
if date_col not in df.columns:
|
61 |
+
return pd.DataFrame([{"Error": f"Missing '{date_col}' column"}])
|
62 |
+
df[date_col] = pd.to_datetime(df[date_col], errors='coerce').dt.date
|
63 |
out = df[df[date_col] == target]
|
64 |
+
if rep and rep_col in df.columns:
|
65 |
out = out[out[rep_col] == rep]
|
66 |
return out
|
67 |
|
68 |
# -------------------- REPORT FUNCTIONS --------------------
|
69 |
def get_calls(rep=None):
|
70 |
df = load_sheet("Calls")
|
|
|
|
|
71 |
return filter_week(df, "Call Date", "Rep", rep)
|
72 |
|
73 |
+
def get_appointments(rep=None):
|
74 |
+
df = load_sheet("Appointments")
|
75 |
+
return filter_week(df, "Appointment Date", "Rep", rep)
|
76 |
+
|
77 |
+
def search_calls_by_date(y,m,d,rep):
|
78 |
df = load_sheet("Calls")
|
79 |
+
return filter_date(df, "Call Date", "Rep", y,m,d,rep)
|
|
|
|
|
80 |
|
81 |
+
def search_appointments_by_date(y,m,d,rep):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
df = load_sheet("Appointments")
|
83 |
+
return filter_date(df, "Appointment Date", "Rep", y,m,d,rep)
|
84 |
+
|
85 |
+
# Leads
|
86 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
def get_leads_detail():
|
88 |
df = load_sheet("AllocatedLeads")
|
|
|
|
|
89 |
return df
|
90 |
|
91 |
def get_leads_summary():
|
92 |
df = get_leads_detail()
|
93 |
+
if "Assigned Rep" not in df.columns:
|
94 |
+
return pd.DataFrame([{"Error": "Missing 'Assigned Rep'"}])
|
95 |
return df.groupby("Assigned Rep").size().reset_index(name="Leads Count")
|
96 |
|
97 |
# -------------------- INSIGHTS --------------------
|
98 |
def compute_insights():
|
99 |
calls = get_calls()
|
100 |
+
appts = get_appointments()
|
101 |
leads = get_leads_detail()
|
102 |
def top(df, col):
|
103 |
+
if col in df.columns and not df.empty:
|
104 |
+
try:
|
105 |
+
return df[col].mode()[0]
|
106 |
+
except:
|
107 |
+
return "N/A"
|
108 |
+
return "N/A"
|
109 |
+
insights = pd.DataFrame([
|
110 |
{"Metric": "Most Calls This Week", "Rep": top(calls, "Rep")},
|
111 |
+
{"Metric": "Most Appointments This Week", "Rep": top(appts, "Rep")},
|
112 |
{"Metric": "Most Leads Allocated", "Rep": top(leads, "Assigned Rep")},
|
113 |
])
|
114 |
+
return insights
|
115 |
|
116 |
+
# -------------------- DROPDOWN OPTIONS --------------------
|
117 |
+
def rep_options(sheet_name, rep_col):
|
118 |
+
df = load_sheet(sheet_name)
|
119 |
+
if rep_col in df.columns:
|
120 |
+
return sorted(df[rep_col].dropna().unique().tolist())
|
121 |
+
return []
|
|
|
122 |
|
123 |
+
# -------------------- USER MANAGEMENT --------------------
|
124 |
def save_users(df):
|
125 |
ws = client.open_by_url(sheet_url).worksheet("User")
|
126 |
+
headers = df.columns.tolist()
|
127 |
+
rows = df.fillna("").values.tolist()
|
128 |
ws.clear()
|
129 |
+
ws.update([headers] + rows)
|
130 |
+
return pd.DataFrame([{"Status": "Users saved."}])
|
|
|
131 |
|
132 |
+
# -------------------- UI --------------------
|
|
|
|
|
|
|
|
|
|
|
133 |
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
|
134 |
gr.Markdown("# π Graffiti Admin Dashboard")
|
135 |
|
|
|
136 |
with gr.Tab("Calls Report"):
|
137 |
+
rep_calls = gr.Dropdown(label="Optional Rep Filter",
|
138 |
+
choices=rep_options("Calls","Rep"),
|
139 |
+
allow_custom_value=True)
|
140 |
+
calls_btn = gr.Button("Load Current Week Calls")
|
141 |
+
calls_tbl = gr.Dataframe()
|
142 |
+
calls_btn.click(fn=get_calls, inputs=rep_calls, outputs=calls_tbl)
|
143 |
|
144 |
gr.Markdown("### π Search Calls by Specific Date")
|
145 |
+
y1,m1,d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
|
146 |
+
rep1 = gr.Dropdown(label="Optional Rep Filter",
|
147 |
+
choices=rep_options("Calls","Rep"),
|
148 |
+
allow_custom_value=True)
|
149 |
+
calls_date_btn = gr.Button("Search Calls by Date")
|
150 |
+
calls_date_tbl = gr.Dataframe()
|
151 |
+
calls_date_btn.click(fn=search_calls_by_date,
|
152 |
+
inputs=[y1,m1,d1,rep1],
|
153 |
+
outputs=calls_date_tbl)
|
154 |
|
|
|
155 |
with gr.Tab("Appointments Report"):
|
156 |
+
rep_appt = gr.Dropdown(label="Optional Rep Filter",
|
157 |
+
choices=rep_options("Appointments","Rep"),
|
158 |
+
allow_custom_value=True)
|
159 |
+
appt_btn = gr.Button("Load Current Week Appointments")
|
160 |
+
appt_summary = gr.Dataframe(label="π Weekly Appointments Summary by Rep")
|
161 |
+
appt_tbl = gr.Dataframe()
|
162 |
+
appt_btn.click(
|
163 |
+
fn=lambda rep: (
|
164 |
+
get_appointments(rep).groupby("Rep").size().reset_index(name="Count"),
|
165 |
+
get_appointments(rep)
|
166 |
+
),
|
167 |
+
inputs=rep_appt,
|
168 |
+
outputs=[appt_summary, appt_tbl]
|
169 |
+
)
|
170 |
|
171 |
gr.Markdown("### π Search Appointments by Specific Date")
|
172 |
+
y2,m2,d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
|
173 |
+
rep2 = gr.Dropdown(label="Optional Rep Filter",
|
174 |
+
choices=rep_options("Appointments","Rep"),
|
175 |
+
allow_custom_value=True)
|
176 |
+
appt_date_btn = gr.Button("Search Appointments by Date")
|
177 |
+
appt_date_sum = gr.Dataframe(label="π Appointments Summary for Date by Rep")
|
178 |
+
appt_date_tbl = gr.Dataframe()
|
179 |
+
appt_date_btn.click(
|
180 |
+
fn=lambda y,m,d,rep: (
|
181 |
+
search_appointments_by_date(y,m,d,rep)
|
182 |
+
.groupby("Rep").size().reset_index(name="Count"),
|
183 |
+
search_appointments_by_date(y,m,d,rep)
|
184 |
+
),
|
185 |
+
inputs=[y2,m2,d2,rep2],
|
186 |
+
outputs=[appt_date_sum, appt_date_tbl]
|
187 |
+
)
|
188 |
+
|
189 |
with gr.Tab("Appointed Leads"):
|
190 |
+
leads_btn = gr.Button("View Appointed Leads")
|
191 |
+
leads_sum = gr.Dataframe(label="π Leads Count by Rep")
|
192 |
+
leads_det = gr.Dataframe(label="π Detailed Leads")
|
193 |
+
leads_btn.click(fn=lambda: (get_leads_summary(), get_leads_detail()),
|
194 |
+
outputs=[leads_sum, leads_det])
|
195 |
|
|
|
196 |
with gr.Tab("Insights"):
|
197 |
+
insights_btn = gr.Button("Generate Insights")
|
198 |
+
insights_tbl = gr.Dataframe()
|
199 |
+
insights_btn.click(fn=compute_insights, outputs=insights_tbl)
|
200 |
|
|
|
201 |
with gr.Tab("User Management"):
|
202 |
+
gr.Markdown("## π€ Manage Users\nEdit the grid and click **Save Users** to push changes.")
|
203 |
+
users_df = load_sheet("User")
|
204 |
+
users_grid = gr.Dataframe(value=users_df, interactive=True)
|
|
|
|
|
|
|
205 |
save_btn = gr.Button("Save Users")
|
206 |
+
status = gr.Dataframe()
|
207 |
+
save_btn.click(fn=save_users, inputs=users_grid, outputs=status)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
app.launch()
|