Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,149 +1,156 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import gspread
|
4 |
-
from
|
5 |
from oauth2client.service_account import ServiceAccountCredentials
|
6 |
from datetime import datetime, timedelta
|
7 |
-
from gspread_dataframe import set_with_dataframe
|
8 |
|
9 |
# -------------------- CONFIG --------------------
|
10 |
-
SHEET_URL
|
11 |
-
|
12 |
|
13 |
# -------------------- AUTH --------------------
|
14 |
scope = [
|
15 |
"https://spreadsheets.google.com/feeds",
|
16 |
-
"https://www.googleapis.com/auth/drive"
|
17 |
]
|
18 |
-
creds = ServiceAccountCredentials.from_json_keyfile_name(
|
19 |
-
"deep-mile-461309-t8-0e90103411e0.json", scope
|
20 |
-
)
|
21 |
client = gspread.authorize(creds)
|
22 |
|
23 |
-
# --------------------
|
24 |
-
def
|
25 |
-
"""
|
26 |
-
Try exact match, then fall back to the first worksheet
|
27 |
-
whose title contains `substr` (case-insensitive).
|
28 |
-
"""
|
29 |
-
sh = client.open_by_url(SHEET_URL)
|
30 |
-
try:
|
31 |
-
return sh.worksheet(substr)
|
32 |
-
except WorksheetNotFound:
|
33 |
-
for ws in sh.worksheets():
|
34 |
-
if substr.lower() in ws.title.lower():
|
35 |
-
return ws
|
36 |
-
raise WorksheetNotFound(f"No tab matching '{substr}'")
|
37 |
-
|
38 |
-
# -------------------- SHEET UTILS --------------------
|
39 |
-
def normalize_columns(df: pd.DataFrame) -> pd.DataFrame:
|
40 |
df.columns = df.columns.str.strip().str.title()
|
41 |
return df
|
42 |
|
43 |
-
def
|
44 |
-
"""Return a DataFrame of the entire sheet, or an Error row."""
|
45 |
try:
|
46 |
-
ws
|
47 |
-
|
|
|
48 |
return normalize_columns(df)
|
49 |
except Exception as e:
|
|
|
50 |
return pd.DataFrame([{"Error": str(e)}])
|
51 |
|
52 |
-
|
53 |
-
"""Like load_sheet, but lets WorksheetNotFound bubble up."""
|
54 |
-
ws = open_ws_by_substring(sheet_name)
|
55 |
-
df = pd.DataFrame(ws.get_all_records())
|
56 |
-
return normalize_columns(df)
|
57 |
-
|
58 |
-
# -------------------- DATE FILTER HELPERS --------------------
|
59 |
def get_current_week_range():
|
60 |
-
today = datetime.now()
|
61 |
start = today - timedelta(days=today.weekday())
|
62 |
end = start + timedelta(days=6)
|
63 |
-
return start, end
|
64 |
-
|
65 |
-
def filter_week(df,
|
66 |
-
df[
|
67 |
-
start,
|
68 |
-
out = df[(df[
|
69 |
-
if rep:
|
70 |
-
out = out[out[
|
71 |
return out
|
72 |
|
73 |
-
def filter_date(df,
|
74 |
try:
|
75 |
target = datetime(int(y), int(m), int(d)).date()
|
76 |
except:
|
77 |
-
return pd.DataFrame([{"Error":
|
78 |
-
df[
|
79 |
-
out = df[df[
|
80 |
-
if rep:
|
81 |
-
out = out[out[
|
82 |
return out
|
83 |
|
84 |
-
# -------------------- REPORT
|
85 |
def get_calls(rep=None):
|
86 |
-
df =
|
87 |
if "Call Date" not in df.columns:
|
88 |
-
return
|
89 |
return filter_week(df, "Call Date", "Rep", rep)
|
90 |
|
91 |
-
def
|
92 |
-
df =
|
93 |
-
if "
|
94 |
return df
|
95 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def get_appointments(rep=None):
|
98 |
-
df =
|
99 |
if "Appointment Date" not in df.columns:
|
100 |
-
return
|
101 |
return filter_week(df, "Appointment Date", "Rep", rep)
|
102 |
|
103 |
-
def
|
104 |
-
df =
|
105 |
-
if "
|
106 |
return df
|
107 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
def get_leads_detail():
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
def get_leads_summary():
|
113 |
df = get_leads_detail()
|
114 |
if "Error" in df.columns:
|
115 |
return df
|
116 |
-
return df.groupby("Assigned Rep")
|
117 |
-
.size()\
|
118 |
-
.reset_index(name="Leads Count")
|
119 |
|
|
|
120 |
def compute_insights():
|
121 |
calls = get_calls()
|
122 |
appts = get_appointments()
|
123 |
leads = get_leads_detail()
|
124 |
|
125 |
def top_rep(df, col):
|
126 |
-
if "Error" in df.columns or df.empty
|
127 |
return "N/A"
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
return pd.DataFrame(data)
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
|
143 |
# -------------------- USER MANAGEMENT --------------------
|
144 |
-
def load_users()
|
145 |
-
|
146 |
-
|
|
|
|
|
147 |
"Daily Phone Call Target","Daily Phone Appointment Target",
|
148 |
"Daily Quote Number Target","Daily Quote Revenue Target",
|
149 |
"Weekly Phone Call Target","Weekly Phone Appointment Target",
|
@@ -152,151 +159,115 @@ def load_users() -> pd.DataFrame:
|
|
152 |
"Monthly Quote Number Target","Monthly Quote Revenue Target",
|
153 |
"Monthly Sales Revenue Target"
|
154 |
]
|
155 |
-
|
156 |
-
|
157 |
-
except WorksheetNotFound:
|
158 |
-
return pd.DataFrame(columns=cols)
|
159 |
|
160 |
-
def save_users(df
|
161 |
-
ws = client.open_by_url(SHEET_URL).worksheet(
|
162 |
ws.clear()
|
163 |
set_with_dataframe(ws, df)
|
164 |
return "β
Users saved!"
|
165 |
|
166 |
-
# --------------------
|
167 |
-
with gr.Blocks(title="Graffiti Admin Dashboard") as app:
|
168 |
gr.Markdown("# π Graffiti Admin Dashboard")
|
169 |
|
170 |
-
#
|
171 |
with gr.Tab("Calls Report"):
|
172 |
-
rep_calls = gr.Dropdown(
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
with gr.Column():
|
181 |
-
calls_det = gr.Dataframe(label="π Detailed Calls")
|
182 |
|
183 |
calls_btn.click(
|
184 |
-
fn=lambda r: (
|
185 |
-
get_calls(r).groupby("Rep")
|
186 |
-
.size()
|
187 |
-
.reset_index(name="Count"),
|
188 |
-
get_calls(r)
|
189 |
-
),
|
190 |
inputs=rep_calls,
|
191 |
-
outputs=[
|
192 |
)
|
193 |
|
194 |
gr.Markdown("### π Search Calls by Specific Date")
|
195 |
-
y1 = gr.Textbox(label="Year")
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
calls_date_btn
|
202 |
-
|
203 |
-
with gr.Row():
|
204 |
-
with gr.Column():
|
205 |
-
calls_date_sum = gr.Dataframe(label="π Calls by Rep on Date")
|
206 |
-
with gr.Column():
|
207 |
-
calls_date_det = gr.Dataframe(label="π Detailed Calls on Date")
|
208 |
|
209 |
calls_date_btn.click(
|
210 |
-
fn=
|
211 |
-
search_calls_by_date(y,m,d,r)
|
212 |
-
.groupby("Rep")
|
213 |
-
.size()
|
214 |
-
.reset_index(name="Count"),
|
215 |
-
search_calls_by_date(y,m,d,r)
|
216 |
-
),
|
217 |
inputs=[y1,m1,d1,rep1],
|
218 |
-
outputs=
|
219 |
)
|
220 |
|
221 |
-
#
|
222 |
with gr.Tab("Appointments Report"):
|
223 |
-
rep_appt = gr.Dropdown(
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
with gr.Column():
|
232 |
-
appt_det = gr.Dataframe(label="π Detailed Appointments")
|
233 |
|
234 |
appt_btn.click(
|
235 |
-
fn=lambda r: (
|
236 |
-
get_appointments(r)
|
237 |
-
.groupby("Rep")
|
238 |
-
.size()
|
239 |
-
.reset_index(name="Count"),
|
240 |
-
get_appointments(r)
|
241 |
-
),
|
242 |
inputs=rep_appt,
|
243 |
-
outputs=[
|
244 |
)
|
245 |
|
246 |
gr.Markdown("### π Search Appointments by Specific Date")
|
247 |
-
y2 = gr.Textbox(label="Year")
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
appt_date_btn
|
254 |
-
|
255 |
-
|
256 |
-
with gr.Column():
|
257 |
-
appt_date_sum = gr.Dataframe(label="π Appts by Rep on Date")
|
258 |
-
with gr.Column():
|
259 |
-
appt_date_det = gr.Dataframe(label="π Detailed Appts on Date")
|
260 |
|
261 |
appt_date_btn.click(
|
262 |
fn=lambda y,m,d,r: (
|
263 |
-
search_appointments_by_date(y,m,d,r)
|
264 |
-
.groupby("Rep")
|
265 |
-
.size()
|
266 |
-
.reset_index(name="Count"),
|
267 |
search_appointments_by_date(y,m,d,r)
|
268 |
),
|
269 |
inputs=[y2,m2,d2,rep2],
|
270 |
-
outputs=[
|
271 |
)
|
272 |
|
273 |
-
#
|
274 |
with gr.Tab("Appointed Leads"):
|
275 |
-
leads_btn
|
276 |
-
|
277 |
-
|
278 |
-
with gr.Column():
|
279 |
-
leads_sum = gr.Dataframe(label="π Leads Count by Rep")
|
280 |
-
with gr.Column():
|
281 |
-
leads_det = gr.Dataframe(label="π Detailed Leads")
|
282 |
|
283 |
leads_btn.click(
|
284 |
fn=lambda: (get_leads_summary(), get_leads_detail()),
|
285 |
-
outputs=[
|
286 |
)
|
287 |
|
288 |
-
#
|
289 |
with gr.Tab("Insights"):
|
290 |
insights_btn = gr.Button("Generate Insights")
|
291 |
insights_tbl = gr.Dataframe()
|
|
|
292 |
insights_btn.click(fn=compute_insights, outputs=insights_tbl)
|
293 |
|
294 |
-
#
|
295 |
with gr.Tab("User Management"):
|
296 |
-
gr.Markdown("
|
297 |
users_tbl = gr.Dataframe(value=load_users(), interactive=True)
|
298 |
save_btn = gr.Button("Save Users")
|
299 |
-
|
300 |
-
|
|
|
301 |
|
302 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import gspread
|
4 |
+
from gspread_dataframe import set_with_dataframe
|
5 |
from oauth2client.service_account import ServiceAccountCredentials
|
6 |
from datetime import datetime, timedelta
|
|
|
7 |
|
8 |
# -------------------- CONFIG --------------------
|
9 |
+
SHEET_URL = "https://docs.google.com/spreadsheets/d/1if4KoVQvw5ZbhknfdZbzMkcTiPfsD6bz9V3a1th-bwQ"
|
10 |
+
CREDS_JSON = "deep-mile-461309-t8-0e90103411e0.json"
|
11 |
|
12 |
# -------------------- AUTH --------------------
|
13 |
scope = [
|
14 |
"https://spreadsheets.google.com/feeds",
|
15 |
+
"https://www.googleapis.com/auth/drive"
|
16 |
]
|
17 |
+
creds = ServiceAccountCredentials.from_json_keyfile_name(CREDS_JSON, scope)
|
|
|
|
|
18 |
client = gspread.authorize(creds)
|
19 |
|
20 |
+
# -------------------- SHEET LOAD/UTILS --------------------
|
21 |
+
def normalize_columns(df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
df.columns = df.columns.str.strip().str.title()
|
23 |
return df
|
24 |
|
25 |
+
def load_sheet_df(sheet_name):
|
|
|
26 |
try:
|
27 |
+
ws = client.open_by_url(SHEET_URL).worksheet(sheet_name)
|
28 |
+
records= ws.get_all_records()
|
29 |
+
df = pd.DataFrame(records)
|
30 |
return normalize_columns(df)
|
31 |
except Exception as e:
|
32 |
+
# return a one-row DF with an Error column
|
33 |
return pd.DataFrame([{"Error": str(e)}])
|
34 |
|
35 |
+
# -------------------- DATE FILTERS --------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def get_current_week_range():
|
37 |
+
today = datetime.now()
|
38 |
start = today - timedelta(days=today.weekday())
|
39 |
end = start + timedelta(days=6)
|
40 |
+
return start.date(), end.date()
|
41 |
+
|
42 |
+
def filter_week(df, date_column, rep_column=None, rep=None):
|
43 |
+
df[date_column] = pd.to_datetime(df[date_column], errors="coerce").dt.date
|
44 |
+
start,end = get_current_week_range()
|
45 |
+
out = df[(df[date_column] >= start) & (df[date_column] <= end)]
|
46 |
+
if rep and rep in out.columns:
|
47 |
+
out = out[out[rep_column] == rep]
|
48 |
return out
|
49 |
|
50 |
+
def filter_date(df, date_column, rep_column, y,m,d, rep):
|
51 |
try:
|
52 |
target = datetime(int(y), int(m), int(d)).date()
|
53 |
except:
|
54 |
+
return pd.DataFrame([{"Error":"Invalid date"}])
|
55 |
+
df[date_column] = pd.to_datetime(df[date_column], errors="coerce").dt.date
|
56 |
+
out = df[df[date_column] == target]
|
57 |
+
if rep and rep in out.columns:
|
58 |
+
out = out[out[rep_column] == rep]
|
59 |
return out
|
60 |
|
61 |
+
# -------------------- REPORT DATA --------------------
|
62 |
def get_calls(rep=None):
|
63 |
+
df = load_sheet_df("Calls")
|
64 |
if "Call Date" not in df.columns:
|
65 |
+
return pd.DataFrame([{"Error":"Missing 'Call Date' column"}])
|
66 |
return filter_week(df, "Call Date", "Rep", rep)
|
67 |
|
68 |
+
def get_calls_summary(rep=None):
|
69 |
+
df = get_calls(rep)
|
70 |
+
if "Error" in df.columns or df.empty:
|
71 |
return df
|
72 |
+
return (
|
73 |
+
df.groupby("Rep")
|
74 |
+
.size()
|
75 |
+
.reset_index(name="Count")
|
76 |
+
.sort_values("Count", ascending=False)
|
77 |
+
)
|
78 |
+
|
79 |
+
def search_calls_by_date(y,m,d, rep):
|
80 |
+
df = load_sheet_df("Calls")
|
81 |
+
if "Call Date" not in df.columns:
|
82 |
+
return pd.DataFrame([{"Error":"Missing 'Call Date' column"}])
|
83 |
+
return filter_date(df, "Call Date", "Rep", y,m,d, rep)
|
84 |
|
85 |
def get_appointments(rep=None):
|
86 |
+
df = load_sheet_df("Appointments")
|
87 |
if "Appointment Date" not in df.columns:
|
88 |
+
return pd.DataFrame([{"Error":"Missing 'Appointment Date' column"}])
|
89 |
return filter_week(df, "Appointment Date", "Rep", rep)
|
90 |
|
91 |
+
def get_appointments_summary(rep=None):
|
92 |
+
df = get_appointments(rep)
|
93 |
+
if "Error" in df.columns or df.empty:
|
94 |
return df
|
95 |
+
return (
|
96 |
+
df.groupby("Rep")
|
97 |
+
.size()
|
98 |
+
.reset_index(name="Count")
|
99 |
+
.sort_values("Count", ascending=False)
|
100 |
+
)
|
101 |
+
|
102 |
+
def search_appointments_by_date(y,m,d, rep):
|
103 |
+
df = load_sheet_df("Appointments")
|
104 |
+
if "Appointment Date" not in df.columns:
|
105 |
+
return pd.DataFrame([{"Error":"Missing 'Appointment Date' column"}])
|
106 |
+
return filter_date(df, "Appointment Date", "Rep", y,m,d, rep)
|
107 |
|
108 |
def get_leads_detail():
|
109 |
+
df = load_sheet_df("AllocatedLeads")
|
110 |
+
# rename if needed
|
111 |
+
df = df.rename(columns={"Assigned Rep":"Assigned Rep"})
|
112 |
+
if "Assigned Rep" not in df.columns:
|
113 |
+
return pd.DataFrame([{"Error":"Missing 'Assigned Rep' col"}])
|
114 |
+
return df
|
115 |
|
116 |
def get_leads_summary():
|
117 |
df = get_leads_detail()
|
118 |
if "Error" in df.columns:
|
119 |
return df
|
120 |
+
return df.groupby("Assigned Rep").size().reset_index(name="Leads Count")
|
|
|
|
|
121 |
|
122 |
+
# -------------------- INSIGHTS --------------------
|
123 |
def compute_insights():
|
124 |
calls = get_calls()
|
125 |
appts = get_appointments()
|
126 |
leads = get_leads_detail()
|
127 |
|
128 |
def top_rep(df, col):
|
129 |
+
if "Error" in df.columns or df.empty:
|
130 |
return "N/A"
|
131 |
+
counts = df.groupby(col).size()
|
132 |
+
if counts.empty:
|
133 |
+
return "N/A"
|
134 |
+
return counts.idxmax()
|
135 |
|
136 |
+
top_calls = top_rep(calls, "Rep")
|
137 |
+
top_appts = top_rep(appts, "Rep")
|
138 |
+
# unify column name for leads
|
139 |
+
leads = leads.rename(columns={"Assigned Rep":"Rep"})
|
140 |
+
top_leads = top_rep(leads, "Rep")
|
|
|
141 |
|
142 |
+
return pd.DataFrame([
|
143 |
+
{"Metric":"Most Calls This Week", "Rep":top_calls},
|
144 |
+
{"Metric":"Most Appointments This Week", "Rep":top_appts},
|
145 |
+
{"Metric":"Most Leads Allocated", "Rep":top_leads},
|
146 |
+
])
|
147 |
|
148 |
# -------------------- USER MANAGEMENT --------------------
|
149 |
+
def load_users():
|
150 |
+
df = load_sheet_df("userAccess") # your actual tab name
|
151 |
+
# pick & title-case only the cols you want
|
152 |
+
wanted = [
|
153 |
+
"Id","Email","Name","Business","Role",
|
154 |
"Daily Phone Call Target","Daily Phone Appointment Target",
|
155 |
"Daily Quote Number Target","Daily Quote Revenue Target",
|
156 |
"Weekly Phone Call Target","Weekly Phone Appointment Target",
|
|
|
159 |
"Monthly Quote Number Target","Monthly Quote Revenue Target",
|
160 |
"Monthly Sales Revenue Target"
|
161 |
]
|
162 |
+
exist = [c for c in wanted if c in df.columns]
|
163 |
+
return df[exist]
|
|
|
|
|
164 |
|
165 |
+
def save_users(df):
|
166 |
+
ws = client.open_by_url(SHEET_URL).worksheet("userAccess")
|
167 |
ws.clear()
|
168 |
set_with_dataframe(ws, df)
|
169 |
return "β
Users saved!"
|
170 |
|
171 |
+
# -------------------- GRADIO UI --------------------
|
172 |
+
with gr.Blocks(title="π Graffiti Admin Dashboard") as app:
|
173 |
gr.Markdown("# π Graffiti Admin Dashboard")
|
174 |
|
175 |
+
# βββ Calls Report βββββββββββββββββββββββββββββ
|
176 |
with gr.Tab("Calls Report"):
|
177 |
+
rep_calls = gr.Dropdown(
|
178 |
+
label="Optional Rep Filter",
|
179 |
+
choices=load_sheet_df("Calls")["Rep"].dropna().unique().tolist(),
|
180 |
+
allow_custom_value=True
|
181 |
+
)
|
182 |
+
calls_btn = gr.Button("Load Current Week Calls")
|
183 |
+
calls_summary = gr.Dataframe(label="π Calls by Rep")
|
184 |
+
calls_table = gr.Dataframe(label="π Detailed Calls")
|
|
|
|
|
185 |
|
186 |
calls_btn.click(
|
187 |
+
fn=lambda r: (get_calls_summary(r), get_calls(r)),
|
|
|
|
|
|
|
|
|
|
|
188 |
inputs=rep_calls,
|
189 |
+
outputs=[calls_summary, calls_table]
|
190 |
)
|
191 |
|
192 |
gr.Markdown("### π Search Calls by Specific Date")
|
193 |
+
y1,m1,d1 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
|
194 |
+
rep1 = gr.Dropdown(
|
195 |
+
label="Optional Rep Filter",
|
196 |
+
choices=load_sheet_df("Calls")["Rep"].dropna().unique().tolist(),
|
197 |
+
allow_custom_value=True
|
198 |
+
)
|
199 |
+
calls_date_btn = gr.Button("Search Calls by Date")
|
200 |
+
calls_date_table = gr.Dataframe()
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
calls_date_btn.click(
|
203 |
+
fn=search_calls_by_date,
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
inputs=[y1,m1,d1,rep1],
|
205 |
+
outputs=calls_date_table
|
206 |
)
|
207 |
|
208 |
+
# βββ Appointments Report βββββββββββββββββββββ
|
209 |
with gr.Tab("Appointments Report"):
|
210 |
+
rep_appt = gr.Dropdown(
|
211 |
+
label="Optional Rep Filter",
|
212 |
+
choices=load_sheet_df("Appointments")["Rep"].dropna().unique().tolist(),
|
213 |
+
allow_custom_value=True
|
214 |
+
)
|
215 |
+
appt_btn = gr.Button("Load Current Week Appointments")
|
216 |
+
appt_summary = gr.Dataframe(label="π Appts by Rep")
|
217 |
+
appt_table = gr.Dataframe(label="π Detailed Appointments")
|
|
|
|
|
218 |
|
219 |
appt_btn.click(
|
220 |
+
fn=lambda r: (get_appointments_summary(r), get_appointments(r)),
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
inputs=rep_appt,
|
222 |
+
outputs=[appt_summary, appt_table]
|
223 |
)
|
224 |
|
225 |
gr.Markdown("### π Search Appointments by Specific Date")
|
226 |
+
y2,m2,d2 = gr.Textbox(label="Year"), gr.Textbox(label="Month"), gr.Textbox(label="Day")
|
227 |
+
rep2 = gr.Dropdown(
|
228 |
+
label="Optional Rep Filter",
|
229 |
+
choices=load_sheet_df("Appointments")["Rep"].dropna().unique().tolist(),
|
230 |
+
allow_custom_value=True
|
231 |
+
)
|
232 |
+
appt_date_btn = gr.Button("Search Appts by Date")
|
233 |
+
appt_date_summary = gr.Dataframe(label="π Appts Summary by Rep")
|
234 |
+
appt_date_table = gr.Dataframe()
|
|
|
|
|
|
|
|
|
235 |
|
236 |
appt_date_btn.click(
|
237 |
fn=lambda y,m,d,r: (
|
238 |
+
(lambda df: df.groupby("Rep").size().reset_index(name="Count"))(search_appointments_by_date(y,m,d,r)),
|
|
|
|
|
|
|
239 |
search_appointments_by_date(y,m,d,r)
|
240 |
),
|
241 |
inputs=[y2,m2,d2,rep2],
|
242 |
+
outputs=[appt_date_summary, appt_date_table]
|
243 |
)
|
244 |
|
245 |
+
# βββ Appointed Leads ββββββββββββββββββββββββββ
|
246 |
with gr.Tab("Appointed Leads"):
|
247 |
+
leads_btn = gr.Button("View Appointed Leads")
|
248 |
+
leads_summary = gr.Dataframe(label="π Leads Count by Rep")
|
249 |
+
leads_detail = gr.Dataframe(label="π Detailed Leads")
|
|
|
|
|
|
|
|
|
250 |
|
251 |
leads_btn.click(
|
252 |
fn=lambda: (get_leads_summary(), get_leads_detail()),
|
253 |
+
outputs=[leads_summary, leads_detail]
|
254 |
)
|
255 |
|
256 |
+
# βββ Insights βββββββββββββββββββββββββββββββββ
|
257 |
with gr.Tab("Insights"):
|
258 |
insights_btn = gr.Button("Generate Insights")
|
259 |
insights_tbl = gr.Dataframe()
|
260 |
+
|
261 |
insights_btn.click(fn=compute_insights, outputs=insights_tbl)
|
262 |
|
263 |
+
# βββ User Management ββββββββββββββββββββββββββ
|
264 |
with gr.Tab("User Management"):
|
265 |
+
gr.Markdown("## π€ Manage Users\nEdit/add/remove rows below, then click **Save Users**.")
|
266 |
users_tbl = gr.Dataframe(value=load_users(), interactive=True)
|
267 |
save_btn = gr.Button("Save Users")
|
268 |
+
status = gr.Textbox()
|
269 |
+
|
270 |
+
save_btn.click(fn=save_users, inputs=users_tbl, outputs=status)
|
271 |
|
272 |
+
# end Blocks
|
273 |
+
app.launch()
|