SEOContent / app.py
IAMTFRMZA's picture
Create app.py
3d2214e verified
raw
history blame
5.42 kB
import os
import openai
import gradio as gr
from bs4 import BeautifulSoup
import requests
import nest_asyncio
import asyncio
from playwright.sync_api import sync_playwright
nest_asyncio.apply()
openai.api_key = os.getenv("OPENAI_API_KEY")
# Synchronous version for HF Spaces compatibility
def extract_text_from_url(url):
with sync_playwright() as pw:
browser = pw.chromium.launch(headless=True)
page = browser.new_page()
page.goto(url, timeout=60000)
page.wait_for_load_state('networkidle')
content = page.content()
browser.close()
soup = BeautifulSoup(content, "html.parser")
text = ' '.join(p.get_text(strip=True) for p in soup.find_all(['p', 'span', 'h1', 'h2', 'li']))
return text[:4000] # limit to 4000 characters
def extract_keywords(text):
prompt = f"""
Extract up to 10 concise, relevant SEO keywords suitable for an automotive advertisement from the following content:
{text}
Keywords:
"""
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=0.6,
max_tokens=100
)
keywords = response.choices[0].message.content.strip().split(',')
return [kw.strip() for kw in keywords]
def generate_ad_copy(platform, keywords):
prompt = f"""
Create a compelling, SEO-optimized {platform} ad using these keywords: {', '.join(keywords)}.
Include a clear and enticing call-to-action.
"""
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=300
)
return response.choices[0].message.content.strip()
def generate_ad_image(keywords):
kw_str = ", ".join(keywords)
image_prompt = f"Professional automotive social media ad featuring: {kw_str}. Bright visuals, luxury theme, with text overlay space."
response = openai.Image.create(
prompt=image_prompt,
n=1,
size="512x512"
)
image_url = response["data"][0]["url"]
img_data = requests.get(image_url).content
img_file = "generated_ad_image.png"
with open(img_file, "wb") as f:
f.write(img_data)
return img_file
def main_workflow(input_mode, url_or_keywords):
error = None
# Step 1: Get keywords
if input_mode == "URL":
try:
text = extract_text_from_url(url_or_keywords)
keywords = extract_keywords(text)
except Exception as e:
return None, None, None, f"URL extraction error: {e}"
else:
keywords = [kw.strip() for kw in url_or_keywords.split(",") if kw.strip()]
if not keywords:
return None, None, None, "Please provide at least one keyword."
# Step 2: Generate ad copies
platforms = ["Facebook", "Instagram", "X (Twitter)", "Google Search"]
ad_copies = {}
for platform in platforms:
ad_copies[platform] = generate_ad_copy(platform, keywords)
# Step 3: Generate ad image
try:
image_path = generate_ad_image(keywords)
except Exception as e:
image_path = None
error = f"Image generation error: {e}"
# Step 4: Save ad copies to txt
output_txt = "generated_ads.txt"
with open(output_txt, "w", encoding="utf-8") as f:
for platform, content in ad_copies.items():
f.write(f"--- {platform} Ad Copy ---\n{content}\n\n")
return keywords, ad_copies, image_path, error
def run_space(input_mode, url, keywords):
url_or_keywords = url if input_mode == "URL" else keywords
keywords, ad_copies, image_path, error = main_workflow(input_mode, url_or_keywords)
ad_previews = ""
if ad_copies:
for platform, ad in ad_copies.items():
ad_previews += f"### {platform}\n{ad}\n\n"
return (
keywords,
ad_previews,
image_path,
"generated_ads.txt" if ad_copies else None,
error
)
with gr.Blocks() as demo:
gr.Markdown("# πŸš— Auto Ad Generator\nPaste a car listing URL **or** enter your own keywords, then preview AI-generated ads for each social media platform, plus an auto-generated image!")
input_mode = gr.Radio(["URL", "Keywords"], value="URL", label="Input Type")
url_input = gr.Textbox(label="Listing URL", placeholder="https://www.cars.com/listing/...", visible=True)
kw_input = gr.Textbox(label="Manual Keywords (comma separated)", placeholder="e.g. BMW, used car, sunroof", visible=False)
submit_btn = gr.Button("Generate Ads")
gr.Markdown("## Keywords")
kw_out = gr.JSON(label="Extracted/Provided Keywords")
gr.Markdown("## Ad Copy Previews")
ad_out = gr.Markdown(label="Ad Copy Preview")
gr.Markdown("## Generated Ad Image")
img_out = gr.Image(label="Generated Ad Image", type="filepath")
gr.Markdown("## Download Ad Copies")
file_out = gr.File(label="Download TXT")
err_out = gr.Textbox(label="Errors", interactive=False)
def show_hide_fields(choice):
return (
gr.update(visible=choice == "URL"),
gr.update(visible=choice == "Keywords"),
)
input_mode.change(show_hide_fields, input_mode, [url_input, kw_input])
submit_btn.click(
run_space,
inputs=[input_mode, url_input, kw_input],
outputs=[kw_out, ad_out, img_out, file_out, err_out]
)
demo.launch()