import os import openai import gradio as gr from bs4 import BeautifulSoup import requests openai.api_key = os.getenv("OPENAI_API_KEY") def extract_text_from_url(url): try: resp = requests.get(url, timeout=30, headers={ "User-Agent": "Mozilla/5.0 (compatible; Bot/1.0)" }) soup = BeautifulSoup(resp.content, "html.parser") candidates = soup.find_all(['h1','h2','h3','h4','p','span','li']) text = ' '.join([c.get_text(strip=True) for c in candidates]) text = text[:4000] if len(text) < 100: raise ValueError("Could not extract enough content (site may require JavaScript). Please enter keywords manually.") return text except Exception as e: raise ValueError(f"URL extraction error: {e}") def extract_keywords(text): prompt = f""" Extract up to 10 concise, relevant SEO keywords suitable for an automotive advertisement from the following content: {text} Keywords: """ response = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "user", "content": prompt}], temperature=0.6, max_tokens=100 ) output = response.choices[0].message.content.strip() if ',' in output: keywords = output.split(',') else: keywords = output.split('\n') return [kw.strip() for kw in keywords if kw.strip()] def generate_ad_copy(platform, keywords): prompt = f""" Create a compelling, SEO-optimized {platform} ad using these keywords: {', '.join(keywords)}. Include a clear and enticing call-to-action. """ response = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "user", "content": prompt}], temperature=0.7, max_tokens=300 ) return response.choices[0].message.content.strip() def generate_ad_image(keywords): kw_str = ", ".join(keywords) # Enhanced prompt for better visuals image_prompt = ( f"High-quality, photorealistic automotive ad photo of a luxury car. " f"Clean background, professional lighting, stylish dealership setting. " f"Keywords: {kw_str}. Room for text overlay, wide format, visually appealing." ) response = openai.Image.create( prompt=image_prompt, n=1, size="512x512" ) image_url = response["data"][0]["url"] img_data = requests.get(image_url).content img_file = "generated_ad_image.png" with open(img_file, "wb") as f: f.write(img_data) return img_file def platform_html(platform, ad_text): # Platform-specific color and icons if platform == "Facebook": color = "#1877F2" icon = "🌐" elif platform == "Instagram": # Instagram gradient color = "linear-gradient(90deg, #f58529 0%, #dd2a7b 50%, #8134af 100%)" icon = "📸" elif platform == "X (Twitter)": color = "#14171A" icon = "🐦" else: # Google Search color = "#4285F4" icon = "🔍" if platform == "Instagram": # Gradient needs to be on a child div (not background-color) content = f"""
{icon} {platform}
{ad_text}
""" else: content = f"""
{icon} {platform}
{ad_text}
""" return content def main_workflow(input_mode, url_or_keywords): error = None keywords = [] ad_copies = {} image_path = None if input_mode == "URL": try: text = extract_text_from_url(url_or_keywords) keywords = extract_keywords(text) except Exception as e: return None, None, None, f"{e}" else: keywords = [kw.strip() for kw in url_or_keywords.split(",") if kw.strip()] if not keywords: return None, None, None, "Please provide at least one keyword." # Generate ad copies platforms = ["Facebook", "Instagram", "X (Twitter)", "Google Search"] for platform in platforms: ad_copies[platform] = generate_ad_copy(platform, keywords) # Generate image try: image_path = generate_ad_image(keywords) except Exception as e: error = f"Image generation error: {e}" # Save ads to txt output_txt = "generated_ads.txt" with open(output_txt, "w", encoding="utf-8") as f: for platform, content in ad_copies.items(): f.write(f"--- {platform} Ad Copy ---\n{content}\n\n") return keywords, ad_copies, image_path, error def run_space(input_mode, url, keywords): url_or_keywords = url if input_mode == "URL" else keywords keywords, ad_copies, image_path, error = main_workflow(input_mode, url_or_keywords) ad_previews = "" if ad_copies: for platform, ad in ad_copies.items(): ad_previews += platform_html(platform, ad) return ( keywords, ad_previews, image_path, "generated_ads.txt" if ad_copies else None, error ) with gr.Blocks() as demo: gr.Markdown("# 🚗 Auto Ad Generator\nPaste a car listing URL **or** enter your own keywords, then preview AI-generated ads for each social media platform, plus an auto-generated image!") input_mode = gr.Radio(["URL", "Keywords"], value="URL", label="Input Type") url_input = gr.Textbox(label="Listing URL", placeholder="https://www.cars.com/listing/...", visible=True) kw_input = gr.Textbox(label="Manual Keywords (comma separated)", placeholder="e.g. BMW, used car, sunroof", visible=False) submit_btn = gr.Button("Generate Ads") gr.Markdown("## Keywords") kw_out = gr.JSON(label="Extracted/Provided Keywords") gr.Markdown("## Ad Copy Previews") ad_out = gr.HTML(label="Ad Copy Preview") # Now HTML, not Markdown gr.Markdown("## Generated Ad Image") img_out = gr.Image(label="Generated Ad Image", type="filepath") gr.Markdown("## Download Ad Copies") file_out = gr.File(label="Download TXT") err_out = gr.Textbox(label="Errors", interactive=False) def show_hide_fields(choice): return ( gr.update(visible=choice == "URL"), gr.update(visible=choice == "Keywords"), ) input_mode.change(show_hide_fields, input_mode, [url_input, kw_input]) submit_btn.click( run_space, inputs=[input_mode, url_input, kw_input], outputs=[kw_out, ad_out, img_out, file_out, err_out] ) demo.launch()