import os
import openai
import gradio as gr
from bs4 import BeautifulSoup
import requests
openai.api_key = os.getenv("OPENAI_API_KEY")
def extract_text_from_url(url):
try:
resp = requests.get(url, timeout=30, headers={
"User-Agent": "Mozilla/5.0 (compatible; Bot/1.0)"
})
soup = BeautifulSoup(resp.content, "html.parser")
candidates = soup.find_all(['h1','h2','h3','h4','p','span','li'])
text = ' '.join([c.get_text(strip=True) for c in candidates])
text = text[:4000]
if len(text) < 100:
raise ValueError("Could not extract enough content (site may require JavaScript). Please enter keywords manually.")
return text
except Exception as e:
raise ValueError(f"URL extraction error: {e}")
def extract_keywords(text):
prompt = f"""
Extract up to 10 concise, relevant SEO keywords suitable for an automotive advertisement from the following content:
{text}
Keywords:
"""
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=0.6,
max_tokens=100
)
output = response.choices[0].message.content.strip()
if ',' in output:
keywords = output.split(',')
else:
keywords = output.split('\n')
return [kw.strip() for kw in keywords if kw.strip()]
def generate_ad_copy(platform, keywords):
prompt = f"""
Create a compelling, SEO-optimized {platform} ad using these keywords: {', '.join(keywords)}.
Include a clear and enticing call-to-action.
"""
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=300
)
return response.choices[0].message.content.strip()
def generate_ad_image(keywords):
kw_str = ", ".join(keywords)
# Enhanced prompt for better visuals
image_prompt = (
f"High-quality, photorealistic automotive ad photo of a luxury car. "
f"Clean background, professional lighting, stylish dealership setting. "
f"Keywords: {kw_str}. Room for text overlay, wide format, visually appealing."
)
response = openai.Image.create(
prompt=image_prompt,
n=1,
size="512x512"
)
image_url = response["data"][0]["url"]
img_data = requests.get(image_url).content
img_file = "generated_ad_image.png"
with open(img_file, "wb") as f:
f.write(img_data)
return img_file
def platform_html(platform, ad_text):
# Platform-specific color and icons
if platform == "Facebook":
color = "#1877F2"
icon = "🌐"
elif platform == "Instagram":
# Instagram gradient
color = "linear-gradient(90deg, #f58529 0%, #dd2a7b 50%, #8134af 100%)"
icon = "📸"
elif platform == "X (Twitter)":
color = "#14171A"
icon = "🐦"
else: # Google Search
color = "#4285F4"
icon = "🔍"
if platform == "Instagram":
# Gradient needs to be on a child div (not background-color)
content = f"""
{icon} {platform}
{ad_text}
"""
else:
content = f"""
{icon} {platform}
{ad_text}
"""
return content
def main_workflow(input_mode, url_or_keywords):
error = None
keywords = []
ad_copies = {}
image_path = None
if input_mode == "URL":
try:
text = extract_text_from_url(url_or_keywords)
keywords = extract_keywords(text)
except Exception as e:
return None, None, None, f"{e}"
else:
keywords = [kw.strip() for kw in url_or_keywords.split(",") if kw.strip()]
if not keywords:
return None, None, None, "Please provide at least one keyword."
# Generate ad copies
platforms = ["Facebook", "Instagram", "X (Twitter)", "Google Search"]
for platform in platforms:
ad_copies[platform] = generate_ad_copy(platform, keywords)
# Generate image
try:
image_path = generate_ad_image(keywords)
except Exception as e:
error = f"Image generation error: {e}"
# Save ads to txt
output_txt = "generated_ads.txt"
with open(output_txt, "w", encoding="utf-8") as f:
for platform, content in ad_copies.items():
f.write(f"--- {platform} Ad Copy ---\n{content}\n\n")
return keywords, ad_copies, image_path, error
def run_space(input_mode, url, keywords):
url_or_keywords = url if input_mode == "URL" else keywords
keywords, ad_copies, image_path, error = main_workflow(input_mode, url_or_keywords)
ad_previews = ""
if ad_copies:
for platform, ad in ad_copies.items():
ad_previews += platform_html(platform, ad)
return (
keywords,
ad_previews,
image_path,
"generated_ads.txt" if ad_copies else None,
error
)
with gr.Blocks() as demo:
gr.Markdown("# 🚗 Auto Ad Generator\nPaste a car listing URL **or** enter your own keywords, then preview AI-generated ads for each social media platform, plus an auto-generated image!")
input_mode = gr.Radio(["URL", "Keywords"], value="URL", label="Input Type")
url_input = gr.Textbox(label="Listing URL", placeholder="https://www.cars.com/listing/...", visible=True)
kw_input = gr.Textbox(label="Manual Keywords (comma separated)", placeholder="e.g. BMW, used car, sunroof", visible=False)
submit_btn = gr.Button("Generate Ads")
gr.Markdown("## Keywords")
kw_out = gr.JSON(label="Extracted/Provided Keywords")
gr.Markdown("## Ad Copy Previews")
ad_out = gr.HTML(label="Ad Copy Preview") # Now HTML, not Markdown
gr.Markdown("## Generated Ad Image")
img_out = gr.Image(label="Generated Ad Image", type="filepath")
gr.Markdown("## Download Ad Copies")
file_out = gr.File(label="Download TXT")
err_out = gr.Textbox(label="Errors", interactive=False)
def show_hide_fields(choice):
return (
gr.update(visible=choice == "URL"),
gr.update(visible=choice == "Keywords"),
)
input_mode.change(show_hide_fields, input_mode, [url_input, kw_input])
submit_btn.click(
run_space,
inputs=[input_mode, url_input, kw_input],
outputs=[kw_out, ad_out, img_out, file_out, err_out]
)
demo.launch()