IAMTFRMZA's picture
Update app.py
2e95bed verified
raw
history blame
6.43 kB
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# ---------------- WebSocket Client for Voice ----------------
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri, self.headers, self.client_id = uri, headers, client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
async def connect(self):
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
def run(self):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(self.connect())
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1: arr = arr.mean(axis=1)
arr = (arr / np.max(np.abs(arr))) if np.max(np.abs(arr)) > 0 else arr
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO(); sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO(); audio.export(out, format="wav"); out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), asyncio.get_event_loop())
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if cid not in connections: return "Connecting..."
sr, arr = chunk
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript
def clear_transcript(cid):
if cid in connections: connections[cid].transcript = ""
return ""
# ---------------- Chat Assistant Logic ----------------
def handle_chat(user_input, history, thread_id, image_url):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "❌ Missing API key or Assistant ID.", history, thread_id, image_url
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed": break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
history.append((user_input, content))
match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
content
)
if match:
image_url = match.group(0)
break
return "", history, thread_id, image_url
except Exception as e:
return f"❌ {e}", history, thread_id, image_url
# ---------------- UI ----------------
with gr.Blocks(theme="lone17/kotaemon") as app:
gr.Markdown("# πŸ“„ Document AI Assistant")
# States
chat_state = gr.State([])
thread_state = gr.State()
image_state = gr.State()
client_id = gr.State()
mic_shown = gr.State(False)
with gr.Row(equal_height=True):
# Left: Document Viewer
with gr.Column(scale=1):
image_display = gr.Image(label="πŸ–ΌοΈ Document Preview", type="filepath", show_download_button=False)
# Right: Chat + Mic
with gr.Column(scale=1.4):
chat = gr.Chatbot(label="πŸ’¬ Chat", height=450)
with gr.Row():
user_input = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=6)
mic_btn = gr.Button("πŸŽ™οΈ", scale=1)
send_btn = gr.Button("Send", scale=2)
# Hidden Voice Section
with gr.Row(visible=False) as mic_row:
with gr.Column(scale=4):
audio = gr.Audio(label="🎀 Speak", streaming=True)
with gr.Column(scale=5):
transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
with gr.Column(scale=2):
clear_btn = gr.Button("🧹 Clear")
# Logic Wiring
def toggle_mic(state): return not state, gr.update(visible=not state)
mic_btn.click(toggle_mic, inputs=mic_shown, outputs=[mic_shown, mic_row])
send_btn.click(handle_chat,
inputs=[user_input, chat_state, thread_state, image_state],
outputs=[user_input, chat, thread_state, image_state])
image_state.change(fn=lambda x: x, inputs=image_state, outputs=image_display)
audio.stream(fn=send_audio, inputs=[audio, client_id], outputs=transcript, stream_every=0.5)
clear_btn.click(fn=clear_transcript, inputs=[client_id], outputs=transcript)
app.load(fn=create_ws, outputs=[client_id])
app.launch()