IAMTFRMZA's picture
Update app.py
dda2dda verified
raw
history blame
7.87 kB
# top of the file
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect
from dotenv import load_dotenv
# Load secrets
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# WebSocket Client
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri = uri
self.headers = headers
self.client_id = client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
self.loop = asyncio.new_event_loop()
async def connect(self):
try:
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
except Exception as e:
print(f"\U0001F534 WebSocket Connection Failed: {e}")
def run(self):
asyncio.set_event_loop(self.loop)
self.loop.run_until_complete(self.connect())
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), self.loop)
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1:
arr = arr.mean(axis=1)
if np.max(np.abs(arr)) > 0:
arr = arr / np.max(np.abs(arr))
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO()
sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO()
audio.export(out, format="wav")
out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
# Real-time transcription connection manager
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if not cid or cid not in connections:
return "Connecting..."
sr, arr = chunk
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript
def clear_transcript(cid):
if cid in connections:
connections[cid].transcript = ""
return ""
# ============ Chat Assistant ============
def handle_chat(user_input, history, thread_id, image_url):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "❌ Missing secrets!", history, thread_id, image_url
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed": break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": content})
match = re.search(
r'https://raw\\.githubusercontent\\.com/AndrewLORTech/surgical-pathology-manual/main/[\\w\\-/]*\\.png',
content
)
if match: image_url = match.group(0)
break
return "", history, thread_id, image_url
except Exception as e:
return f"❌ {e}", history, thread_id, image_url
# ============ Gradio UI ============
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# πŸ“„ Document AI Assistant")
gr.HTML("""
<style>
#ask-btn, #clear-chat-btn {
font-size: 16px !important;
padding: 10px 20px !important;
}
.record-button button {
font-size: 16px !important;
padding: 12px 24px !important;
background-color: #f2f2f2;
}
</style>
""")
chat_state = gr.State([])
thread_state = gr.State()
image_state = gr.State()
client_id = gr.State()
voice_enabled = gr.State(False)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
image_display = gr.Image(label="πŸ–ΌοΈ Document", type="filepath", show_download_button=False)
with gr.Column(scale=2):
chat = gr.Chatbot(label="πŸ’¬ Chat", height=460, type="messages")
with gr.Row():
user_prompt = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=6)
mic_toggle_btn = gr.Button("πŸŽ™οΈ", scale=1)
send_btn = gr.Button("Send", variant="primary", scale=2)
with gr.Accordion("🎀 Voice Transcription", open=False) as voice_section:
with gr.Row():
voice_input = gr.Audio(label="πŸŽ™οΈ Record", streaming=True, elem_classes="record-button")
voice_transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
with gr.Row():
ask_btn = gr.Button("🟒 Ask", elem_id="ask-btn")
clear_chat_btn = gr.Button("🧹 Clear Chat", elem_id="clear-chat-btn")
# Functional bindings
def toggle_voice(curr):
return not curr, gr.update(visible=not curr)
def send_transcript_to_assistant(transcript, history, thread_id, image_url):
if not transcript.strip():
return gr.update(), history, thread_id, image_url
return handle_chat(transcript, history, thread_id, image_url)
def clear_chat_and_transcript(client_id):
if client_id in connections:
connections[client_id].transcript = ""
return [], "", None, None
mic_toggle_btn.click(fn=toggle_voice, inputs=voice_enabled, outputs=[voice_enabled, voice_section])
send_btn.click(fn=handle_chat,
inputs=[user_prompt, chat_state, thread_state, image_state],
outputs=[user_prompt, chat, thread_state, image_state])
image_state.change(fn=lambda x: x, inputs=image_state, outputs=image_display)
voice_input.stream(fn=send_audio, inputs=[voice_input, client_id], outputs=voice_transcript, stream_every=0.5)
ask_btn.click(fn=send_transcript_to_assistant,
inputs=[voice_transcript, chat_state, thread_state, image_state],
outputs=[user_prompt, chat, thread_state, image_state])
clear_chat_btn.click(fn=clear_chat_and_transcript,
inputs=[client_id],
outputs=[chat, voice_transcript, thread_state, image_state])
app.load(fn=create_ws, outputs=[client_id])
app.launch()