IAMTFRMZA's picture
app.py
d051f5d verified
raw
history blame
7.25 kB
# app.py
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect
from dotenv import load_dotenv
# Load secrets
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# WebSocket Client
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri = uri
self.headers = headers
self.client_id = client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
self.loop = asyncio.new_event_loop()
async def connect(self):
try:
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
except Exception as e:
print(f"🔴 WebSocket Connection Failed: {e}")
def run(self):
asyncio.set_event_loop(self.loop)
self.loop.run_until_complete(self.connect())
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), self.loop)
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1:
arr = arr.mean(axis=1)
if np.max(np.abs(arr)) > 0:
arr = arr / np.max(np.abs(arr))
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO()
sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO()
audio.export(out, format="wav")
out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
# WebSocket Connection Manager
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if not cid or cid not in connections:
return "Connecting..."
sr, arr = chunk
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript.strip()
def clear_transcript_only(cid):
if cid in connections:
connections[cid].transcript = ""
return ""
def handle_chat(user_input, thread_id):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "❌ Missing secrets!", thread_id, "", None
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed":
break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
content
)
image_url = match.group(0) if match else None
response = f"### ❓ Question\n{user_input}\n\n---\n\n### 💡 Answer\n{content}"
return response, thread_id, image_url
return "No response from assistant.", thread_id, None
except Exception as e:
return f"❌ {e}", thread_id, None
def feed_transcript(transcript, thread_id, cid):
if not transcript.strip():
return gr.update(), thread_id, None
if cid in connections:
connections[cid].transcript = ""
return handle_chat(transcript, thread_id,)
# ============ Gradio UI ============
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.HTML("""
<style>
body {
font-family: 'Inter', sans-serif;
background-color: #f9f9fb;
}
.big-btn {
font-size: 16px;
padding: 12px 20px;
border-radius: 12px;
width: 100%;
background-color: #4f46e5;
color: white;
border: none;
}
.voice-area {
padding-top: 16px;
margin-top: 16px;
border-top: 1px solid #ddd;
}
</style>
""")
thread_state = gr.State()
client_id = gr.State()
with gr.Row(equal_height=True):
with gr.Column(scale=1):
user_input = gr.Textbox(placeholder="Ask your question...", label="Prompt")
submit_btn = gr.Button("🚀 Ask", variant="primary")
result_md = gr.Markdown()
image_output = gr.Image(label="🖼️ Preview", type="filepath", show_download_button=False)
with gr.Column(elem_classes="voice-area"):
gr.Markdown("🎙️ Real-time Voice Input")
voice_input = gr.Audio(label="Tap to Speak", streaming=True, type="numpy")
transcript_box = gr.Textbox(label="Transcript", lines=2, interactive=False)
voice_submit_btn = gr.Button("Send Voice", elem_classes="big-btn")
clear_transcript_btn = gr.Button("🧹 Clear Transcript", elem_classes="big-btn")
with gr.Column(scale=1.4):
gr.Markdown("### ⏱️ Assistant Response")
result_area = gr.Markdown()
# Bindings
submit_btn.click(fn=handle_chat,
inputs=[user_input, thread_state],
outputs=[result_area, thread_state, image_output])
voice_input.stream(fn=send_audio,
inputs=[voice_input, client_id],
outputs=transcript_box,
stream_every=0.5)
voice_submit_btn.click(fn=feed_transcript,
inputs=[transcript_box, thread_state, client_id],
outputs=[result_area, thread_state, image_output])
clear_transcript_btn.click(fn=clear_transcript_only,
inputs=[client_id],
outputs=transcript_box)
app.load(fn=create_ws, outputs=[client_id])
app.launch()