import streamlit as st st.set_page_config(page_title="AI Pathology Assistant", layout="wide", initial_sidebar_state="collapsed") import os import time import re import requests from PIL import Image from io import BytesIO from openai import OpenAI # ------------------ Authentication ------------------ VALID_USERS = { "andrew@lortechnologies.com": "Pass.123", "reubina.wadee@wits.ac.za": "Pass.123", "nicholasdc@c2group.com.au": "Pass.123", "dimitrije1171@gmail.com": "Pass.123", "nathmcg@gmail.com": "Pass.123", "marquerit.vdermerwe@nhls.ac.za": "Pass.123", } def login(): st.title("๐Ÿ” Login Required") email = st.text_input("Email") password = st.text_input("Password", type="password") if st.button("Login"): if VALID_USERS.get(email) == password: st.session_state["authenticated"] = True st.experimental_set_query_params(logged_in="1") st.rerun() else: st.error("โŒ Incorrect email or password.") if not st.session_state.get("authenticated", False): login() st.stop() # ------------------ App Title ------------------ st.title("๐Ÿงฌ AI Pathology Assistant") # ------------------ Load OpenAI ------------------ OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") if not OPENAI_API_KEY: st.error("โŒ Missing OPENAI_API_KEY environment variable.") st.stop() client = OpenAI(api_key=OPENAI_API_KEY) # ------------------ Assistant Setup ------------------ ASSISTANT_ID = "asst_jXDSjCG8LI4HEaFEcjFVq8KB" # ------------------ Session State Initialization ------------------ for key in ["messages", "thread_id", "image_urls", "pending_prompt", "image_url", "image_updated"]: if key not in st.session_state: st.session_state[key] = [] if key.endswith("s") else None if "url" in key else False # ------------------ Tabs ------------------ show_tab2 = True # Set to True to activate visual tab if show_tab2: tab1, tab2 = st.tabs(["๐Ÿ’ฌ Chat Assistant", "๐Ÿ“ท Visual Reference Search"]) else: tab1 = st.tabs(["๐Ÿ’ฌ Chat Assistant"])[0] tab2 = None # ------------------ Tab 1: Chat Assistant ------------------ with tab1: with st.sidebar: st.header("๐Ÿงช Pathology Tools") if st.button("๐Ÿงน Clear Chat"): for k in ["messages", "thread_id", "image_urls", "pending_prompt"]: st.session_state[k] = [] if k.endswith("s") else None st.rerun() show_image = st.toggle("๐Ÿ“ธ Show Images", value=True) keyword = st.text_input("Keyword Search", placeholder="e.g. mitosis, carcinoma") if st.button("๐Ÿ”Ž Search") and keyword: st.session_state.pending_prompt = f"Find clauses or references related to: {keyword}" section = st.text_input("Section Lookup", placeholder="e.g. Connective Tissue") if section: st.session_state.pending_prompt = f"Summarize or list key points from section: {section}" action = st.selectbox("Common Pathology Queries", [ "Select an action...", "List histological features of inflammation", "Summarize features of carcinoma", "List muscle types and features", "Extract diagnostic markers", "Summarize embryology stages" ]) if action != "Select an action...": st.session_state.pending_prompt = action chat_col, image_col = st.columns([2, 1]) with chat_col: st.markdown("### ๐Ÿ’ฌ Ask a Pathology-Specific Question") user_input = st.chat_input("Example: What are features of squamous cell carcinoma?") if user_input: st.session_state.messages.append({"role": "user", "content": user_input}) elif st.session_state.pending_prompt: st.session_state.messages.append({"role": "user", "content": st.session_state.pending_prompt}) st.session_state.pending_prompt = None # Only trigger assistant if last message is from user if st.session_state.messages and st.session_state.messages[-1]["role"] == "user": try: with st.spinner("๐Ÿ”ฌ Analyzing..."): if not st.session_state.thread_id: st.session_state.thread_id = client.beta.threads.create().id client.beta.threads.messages.create( thread_id=st.session_state.thread_id, role="user", content=st.session_state.messages[-1]["content"] ) run = client.beta.threads.runs.create( thread_id=st.session_state.thread_id, assistant_id=ASSISTANT_ID ) # Wait for run to complete while True: status = client.beta.threads.runs.retrieve( thread_id=st.session_state.thread_id, run_id=run.id ) if status.status in ("completed", "failed", "cancelled"): break time.sleep(1) if status.status == "completed": responses = client.beta.threads.messages.list( thread_id=st.session_state.thread_id ).data # Only take the last assistant message for m in responses: if m.role == "assistant": reply = m.content[0].text.value.strip() if not any( reply in msg["content"] or msg["content"] in reply for msg in st.session_state.messages if msg["role"] == "assistant" ): st.session_state.messages.append({"role": "assistant", "content": reply}) # Extract image URLs images = re.findall( r'https://raw\.githubusercontent\.com/AndrewLORTech/witspathologai/main/[^\s\n"]+\.png', reply ) st.session_state.image_urls = images break else: st.error("โŒ Assistant failed to complete.") st.rerun() except Exception as e: st.error(f"โŒ Error: {e}") # Display all messages for msg in st.session_state.messages: with st.chat_message(msg["role"]): st.markdown(msg["content"], unsafe_allow_html=True) # Follow-up Questions if st.session_state.messages and st.session_state.messages[-1]["role"] == "assistant": last = st.session_state.messages[-1]["content"] if "Some Possible Questions:" in last: suggestions = re.findall(r"[-โ€ข]\s*(.*)", last) questions = [q.strip() for q in suggestions if q.strip().endswith("?")] if questions: st.markdown("#### ๐Ÿ’ก Follow-Up Suggestions") for q in questions: if st.button(f"๐Ÿ“Œ {q}"): st.session_state.pending_prompt = q st.rerun() else: st.markdown("#### ๐Ÿ’ก No follow-up questions detected in the assistant's response.") with image_col: if show_image and st.session_state.image_urls: st.markdown("### ๐Ÿ–ผ๏ธ Images") for url in st.session_state.image_urls: try: img = Image.open(BytesIO(requests.get(url, timeout=5).content)) st.image(img, caption=url.split("/")[-1], use_container_width=True) except Exception: st.warning(f"โš ๏ธ Failed to load image: {url}") # ------------------ Tab 2: Visual Reference Search ------------------ import urllib.parse import requests from PIL import Image from io import BytesIO with tab2: ASSISTANT_ID = "asst_9v09zgizdcuuhNdcFQpRo9RO" if "image_thread_id" not in st.session_state: st.session_state.image_thread_id = None if "image_response" not in st.session_state: st.session_state.image_response = None if "image_results" not in st.session_state: st.session_state.image_results = [] if "image_lightbox" not in st.session_state: st.session_state.image_lightbox = None image_input = st.chat_input("Ask for histology visual references (e.g. ovary histology, mitosis)") if image_input: st.session_state.image_response = None st.session_state.image_results = [] st.session_state.image_lightbox = None try: if st.session_state.image_thread_id is None: thread = client.beta.threads.create() st.session_state.image_thread_id = thread.id client.beta.threads.messages.create( thread_id=st.session_state.image_thread_id, role="user", content=image_input ) run = client.beta.threads.runs.create( thread_id=st.session_state.image_thread_id, assistant_id=ASSISTANT_ID ) with st.spinner("๐Ÿ”ฌ Searching for histology references..."): while True: run_status = client.beta.threads.runs.retrieve( thread_id=st.session_state.image_thread_id, run_id=run.id ) if run_status.status in ("completed", "failed", "cancelled"): break time.sleep(1) if run_status.status == "completed": messages = client.beta.threads.messages.list(thread_id=st.session_state.image_thread_id) for msg in reversed(messages.data): if msg.role == "assistant": response_text = msg.content[0].text.value st.session_state.image_response = response_text # Extract and decode image URLs lines = response_text.splitlines() image_urls = [] expecting_url = False for line in lines: line_clean = line.strip().replace("**", "") if "Image URL:" in line_clean: parts = line_clean.split("Image URL:") if len(parts) > 1 and parts[1].strip().startswith("http"): image_urls.append(urllib.parse.unquote(parts[1].strip())) else: expecting_url = True elif expecting_url: if line_clean.startswith("http"): image_urls.append(urllib.parse.unquote(line_clean)) expecting_url = False st.session_state.image_results = [{"image": url} for url in image_urls] if image_urls and not st.session_state.image_lightbox: st.session_state.image_lightbox = image_urls[0] break except Exception as e: st.error(f"โŒ Visual Assistant Error: {e}") if st.session_state.image_results and st.session_state.image_response: st.subheader("๐Ÿ–ผ๏ธ Image Preview(s)") # Split the assistant response into metadata cards cards = [] blocks = st.session_state.image_response.split("### ๐Ÿ–ผ๏ธ ") for block in blocks: if not block.strip(): continue lines = block.strip().splitlines() title = lines[0].strip() meta = "\n".join(lines[1:]) cards.append((title, meta)) cols = st.columns(4) for i, ((title, meta), item) in enumerate(zip(cards, st.session_state.image_results)): image_url = item.get("image") with cols[i % 4]: with st.container(): # Remove Image Filename and Image URL lines from display meta_clean = "\n".join( line for line in meta.splitlines() if all(x not in line.lower() for x in ["image filename", "image url"]) ) st.markdown(f"**๐Ÿ”ฌ {title}**") st.caption(meta_clean) try: r = requests.get(image_url, timeout=10) r.raise_for_status() img = Image.open(BytesIO(r.content)) st.image(img, caption=image_url.split("/")[-1], use_container_width=True) if st.button("๐Ÿ” Zoom", key=f"zoom_{i}"): st.session_state.image_lightbox = image_url except Exception as e: st.warning("โš ๏ธ Could not load image.") st.error(str(e)) else: st.info("โ„น๏ธ No image references found yet.") if st.session_state.image_lightbox: st.markdown("### ๐Ÿ”ฌ Full Image View") try: img_url = urllib.parse.unquote(st.session_state.image_lightbox) r = requests.get(img_url, timeout=10) r.raise_for_status() full_img = Image.open(BytesIO(r.content)) st.image(full_img, caption=img_url.split("/")[-1], use_container_width=True) except Exception as e: st.warning("โš ๏ธ Could not load full image.") st.error(str(e)) if st.button("โŒ Close Preview"): st.session_state.image_lightbox = None st.rerun()