Spaces:
Build error
Build error
import base64 | |
from io import BytesIO | |
import gradio as gr | |
import PIL.Image | |
import torch | |
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny | |
device = "cpu" # Linux & Windows | |
weight_type = torch.float32 # torch.float16 works as well, but pictures seem to be a bit worse | |
pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-dreamshaper", torch_dtype=weight_type) | |
pipe.to(torch_device=device, torch_dtype=weight_type) | |
vae_tiny = AutoencoderTiny.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae") | |
vae_tiny.to(device, dtype=weight_type) | |
vae_large = AutoencoderKL.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae_large") | |
vae_tiny.to(device, dtype=weight_type) | |
def pil_image_to_data_url(img, format="PNG"): | |
buffered = BytesIO() | |
img.save(buffered, format=format) | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return f"data:image/{format.lower()};base64,{img_str}" | |
def run( | |
prompt: str, | |
device_type="GPU", | |
vae_type=None, | |
param_dtype='torch.float16', | |
) -> PIL.Image.Image: | |
if vae_type == "tiny vae": | |
pipe.vae = vae_tiny | |
elif vae_type == "large vae": | |
pipe.vae = vae_large | |
if device_type == "CPU": | |
device = "cpu" | |
param_dtype = 'torch.float32' | |
else: | |
device = "cuda" | |
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32) | |
result = pipe( | |
prompt=prompt, | |
guidance_scale=0.0, | |
num_inference_steps=1, | |
output_type="pil", | |
).images[0] | |
result_url = pil_image_to_data_url(result) | |
return (result, result_url) | |
examples = [ | |
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece", | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown("# SDXS-512-DreamShaper (only CPU now)") | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(min_width=685): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
device_choices = ['GPU','CPU'] | |
device_type = gr.Radio(device_choices, label='Device', | |
value=device_choices[1], | |
interactive=False, | |
info='Only CPU now.') | |
vae_choices = ['tiny vae','large vae'] | |
vae_type = gr.Radio(vae_choices, label='Image Decoder Type', | |
value=vae_choices[0], | |
interactive=True, | |
info='To save GPU memory, use tiny vae. For better quality, use large vae.') | |
dtype_choices = ['torch.float16','torch.float32'] | |
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type', | |
value=dtype_choices[0], | |
interactive=True, | |
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.') | |
download_output = gr.Button("Download output", elem_id="download_output") | |
with gr.Column(min_width=512): | |
result = gr.Image(label="Result", height=512, width=512, elem_id="output_image", show_label=False, show_download_button=True) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=result, | |
fn=run | |
) | |
demo.load(None,None,None) | |
inputs = [prompt, device_type, vae_type, param_dtype] | |
outputs = [result, download_output] | |
prompt.submit(fn=run, inputs=inputs, outputs=outputs) | |
run_button.click(fn=run, inputs=inputs, outputs=outputs) | |
if __name__ == "__main__": | |
demo.queue().launch(debug=True) | |