Spaces:
Runtime error
Runtime error
| import os | |
| import tempfile | |
| import time | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import yt_dlp as youtube_dl | |
| from gradio_client import Client | |
| from pyannote.audio import Pipeline | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| YT_LENGTH_LIMIT_S = 36000 # limit to 1 hour YouTube files | |
| SAMPLING_RATE = 16000 | |
| API_URL = "https://sanchit-gandhi-whisper-jax.hf.space/" | |
| # set up the Gradio client | |
| client = Client(API_URL) | |
| # set up the diarization pipeline | |
| diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=True) | |
| def format_string(timestamp): | |
| """ | |
| Reformat a timestamp string from (HH:)MM:SS to float seconds. Note that the hour column | |
| is optional, and is appended within the function if not input. | |
| Args: | |
| timestamp (str): | |
| Timestamp in string format, either MM:SS or HH:MM:SS. | |
| Returns: | |
| seconds (float): | |
| Total seconds corresponding to the input timestamp. | |
| """ | |
| split_time = timestamp.split(":") | |
| split_time = [float(sub_time) for sub_time in split_time] | |
| if len(split_time) == 2: | |
| split_time.insert(0, 0) | |
| seconds = split_time[0] * 3600 + split_time[1] * 60 + split_time[2] | |
| return seconds | |
| # Adapted from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50 | |
| def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): | |
| """ | |
| Reformat a timestamp from a float of seconds to a string in format (HH:)MM:SS. Note that the hour | |
| column is optional, and is appended in the function if the number of hours > 0. | |
| Args: | |
| seconds (float): | |
| Total seconds corresponding to the input timestamp. | |
| Returns: | |
| timestamp (str): | |
| Timestamp in string format, either MM:SS or HH:MM:SS. | |
| """ | |
| if seconds is not None: | |
| milliseconds = round(seconds * 1000.0) | |
| hours = milliseconds // 3_600_000 | |
| milliseconds -= hours * 3_600_000 | |
| minutes = milliseconds // 60_000 | |
| milliseconds -= minutes * 60_000 | |
| seconds = milliseconds // 1_000 | |
| milliseconds -= seconds * 1_000 | |
| hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
| return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
| else: | |
| # we have a malformed timestamp so just return it as is | |
| return seconds | |
| def format_as_transcription(raw_segments): | |
| return "\n".join( | |
| [ | |
| f"{chunk['speaker']} [{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" | |
| for chunk in raw_segments | |
| ] | |
| ) | |
| def _return_yt_html_embed(yt_url): | |
| video_id = yt_url.split("?v=")[-1] | |
| HTML_str = ( | |
| f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
| " </center>" | |
| ) | |
| return HTML_str | |
| def download_yt_audio(yt_url, filename): | |
| info_loader = youtube_dl.YoutubeDL() | |
| try: | |
| info = info_loader.extract_info(yt_url, download=False) | |
| except youtube_dl.utils.DownloadError as err: | |
| raise gr.Error(str(err)) | |
| file_length = info["duration_string"] | |
| file_length_s = format_string(file_length) | |
| if file_length_s > YT_LENGTH_LIMIT_S: | |
| yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
| file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
| raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
| ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
| with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
| try: | |
| ydl.download([yt_url]) | |
| except youtube_dl.utils.ExtractorError as err: | |
| raise gr.Error(str(err)) | |
| def align(transcription, segments, group_by_speaker=True): | |
| transcription_split = transcription.split("\n") | |
| # re-format transcription from string to List[Dict] | |
| transcript = [] | |
| for chunk in transcription_split: | |
| start_end, transcription = chunk[1:].split("] ") | |
| start, end = start_end.split("->") | |
| transcript.append({"timestamp": (format_string(start), format_string(end)), "text": transcription}) | |
| # diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...}) | |
| # we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...}) | |
| new_segments = [] | |
| prev_segment = cur_segment = segments[0] | |
| for i in range(1, len(segments)): | |
| cur_segment = segments[i] | |
| # check if we have changed speaker ("label") | |
| if cur_segment["label"] != prev_segment["label"] and i < len(segments): | |
| # add the start/end times for the super-segment to the new list | |
| new_segments.append( | |
| { | |
| "segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"]}, | |
| "speaker": prev_segment["label"], | |
| } | |
| ) | |
| prev_segment = segments[i] | |
| # add the last segment(s) if there was no speaker change | |
| new_segments.append( | |
| { | |
| "segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"]}, | |
| "speaker": prev_segment["label"], | |
| } | |
| ) | |
| # get the end timestamps for each chunk from the ASR output | |
| end_timestamps = np.array([chunk["timestamp"][-1] for chunk in transcript]) | |
| segmented_preds = [] | |
| # align the diarizer timestamps and the ASR timestamps | |
| for segment in new_segments: | |
| # get the diarizer end timestamp | |
| end_time = segment["segment"]["end"] | |
| # find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here | |
| upto_idx = np.argmin(np.abs(end_timestamps - end_time)) | |
| if group_by_speaker: | |
| segmented_preds.append( | |
| { | |
| "speaker": segment["speaker"], | |
| "text": "".join([chunk["text"] for chunk in transcript[: upto_idx + 1]]), | |
| "timestamp": (transcript[0]["timestamp"][0], transcript[upto_idx]["timestamp"][1]), | |
| } | |
| ) | |
| else: | |
| for i in range(upto_idx + 1): | |
| segmented_preds.append({"speaker": segment["speaker"], **transcript[i]}) | |
| # crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin) | |
| transcript = transcript[upto_idx + 1 :] | |
| end_timestamps = end_timestamps[upto_idx + 1 :] | |
| # final post-processing | |
| transcription = format_as_transcription(segmented_preds) | |
| return transcription | |
| def transcribe(audio_path, group_by_speaker=True): | |
| # run Whisper JAX asynchronously using Gradio client (endpoint) | |
| job = client.submit( | |
| audio_path, | |
| "transcribe", | |
| True, | |
| api_name="/predict_1", | |
| ) | |
| # run diarization while we wait for Whisper JAX | |
| diarization = diarization_pipeline(audio_path) | |
| segments = diarization.for_json()["content"] | |
| # only fetch the transcription result after performing diarization | |
| transcription, _ = job.result() | |
| # align the ASR transcriptions and diarization timestamps | |
| transcription = align(transcription, segments, group_by_speaker=group_by_speaker) | |
| return transcription | |
| def transcribe_yt(yt_url, group_by_speaker=True): | |
| # run Whisper JAX asynchronously using Gradio client (endpoint) | |
| job = client.submit( | |
| yt_url, | |
| "transcribe", | |
| True, | |
| api_name="/predict_2", | |
| ) | |
| _return_yt_html_embed(yt_url) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| filepath = os.path.join(tmpdirname, "video.mp4") | |
| download_yt_audio(yt_url, filepath) | |
| with open(filepath, "rb") as f: | |
| inputs = f.read() | |
| inputs = ffmpeg_read(inputs, SAMPLING_RATE) | |
| inputs = torch.from_numpy(inputs).float() | |
| inputs = inputs.unsqueeze(0) | |
| diarization = diarization_pipeline( | |
| {"waveform": inputs, "sample_rate": SAMPLING_RATE}, | |
| ) | |
| segments = diarization.for_json()["content"] | |
| # only fetch the transcription result after performing diarization | |
| transcription, _ = job.result() | |
| # align the ASR transcriptions and diarization timestamps | |
| transcription = align(transcription, segments, group_by_speaker=group_by_speaker) | |
| return transcription | |
| title = "Whisper JAX + Speaker Diarization ⚡️" | |
| description = """Combine the speed of Whisper JAX with pyannote speaker diarization to transcribe meetings in super fast time. | |
| """ | |
| article = "Whisper large-v2 model by OpenAI. Speaker diarization model by pyannote. Whisper JAX backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face." | |
| microphone = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.inputs.Audio(source="microphone", optional=True, type="filepath"), | |
| gr.inputs.Checkbox(default=True, label="Group by speaker"), | |
| ], | |
| outputs=[ | |
| gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
| ], | |
| allow_flagging="never", | |
| title=title, | |
| description=description, | |
| article=article, | |
| ) | |
| audio_file = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"), | |
| gr.inputs.Checkbox(default=True, label="Group by speaker"), | |
| ], | |
| outputs=[ | |
| gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
| ], | |
| allow_flagging="never", | |
| title=title, | |
| description=description, | |
| article=article, | |
| ) | |
| youtube = gr.Interface( | |
| fn=transcribe_yt, | |
| inputs=[ | |
| gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
| gr.inputs.Checkbox(default=True, label="Group by speaker"), | |
| ], | |
| outputs=[ | |
| gr.outputs.HTML(label="Video"), | |
| gr.outputs.Textbox(label="Transcription").style(show_copy_button=True), | |
| ], | |
| allow_flagging="never", | |
| title=title, | |
| examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", True]], | |
| cache_examples=False, | |
| description=description, | |
| article=article, | |
| ) | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.TabbedInterface([microphone, audio_file, youtube], ["Microphone", "Audio File", "YouTube"]) | |
| demo.queue(concurrency_count=1, max_size=5) | |
| demo.launch() | |