dabs-iic commited on
Commit
aff5646
·
1 Parent(s): e433eec

first commit

Browse files
Files changed (1) hide show
  1. README.md +80 -1
README.md CHANGED
@@ -7,4 +7,83 @@ sdk: static
7
  pinned: false
8
  ---
9
 
10
- Edit this `README.md` markdown file to author your organization card 🔥
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  pinned: false
8
  ---
9
 
10
+ <div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
11
+ <p class="lg:col-span-3">
12
+ <strong>Más de 30 años aplicando Big Data e Inteligencia Artificial</strong>
13
+ Te ofrecemos soluciones Big Data y técnicas de IA adaptadas a las necesidades de tu negocio para conseguir una ventaja competitiva que produzca beneficios tangibles.
14
+ </p>
15
+ <a
16
+ href="https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"
17
+ class="block overflow-hidden group"
18
+ >
19
+ <div
20
+ class="w-full h-40 object-cover mb-2 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
21
+ >
22
+ <img
23
+ alt=""
24
+ src="https://www.iic.uam.es/wp-content/uploads/2022/03/algoritmos-bioinspirados-1.jpg"
25
+ class="w-40"
26
+ />
27
+ </div>
28
+ <div class="underline">Algoritmos bioinspirados: optimización basada en la evolución natural</div>
29
+ </a>
30
+ <a href="https://youtu.be/ok3hetb42gU" class="block overflow-hidden">
31
+ <img
32
+ alt=""
33
+ src="https://www.iic.uam.es/wp-content/uploads/2022/03/ingeniero-de-datos.jpg"
34
+ class="w-full h-40 object-cover mb-2 bg-gray-300 rounded-lg"
35
+ />
36
+ <div class="underline">Científico, ingeniero y arquitecto de datos, ¿quién es quién en Inteligencia Artificial?</div>
37
+ </a>
38
+ <a
39
+ href="https://huggingface.co/docs/sagemaker"
40
+ class="block overflow-hidden group"
41
+ >
42
+ <div
43
+ class="w-full h-40 object-cover mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start"
44
+ >
45
+ <img
46
+ alt=""
47
+ src="https://www.iic.uam.es/wp-content/uploads/2022/03/optimizacion-quantum.jpg"
48
+ class="w-44 p-4"
49
+ />
50
+ </div>
51
+ <div class="underline">Optimización con computadores cuánticos</div>
52
+ </a>
53
+ <div class="lg:col-span-3">
54
+ <p class="mb-2">
55
+ To train Hugging Face models in Amazon SageMaker, you can use the
56
+ Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
57
+ support in the SageMaker Python SDK.
58
+ </p>
59
+ <p class="mb-2">
60
+ The DLCs are fully integrated with the SageMaker distributed training
61
+ libraries to train models more quickly using the latest generation of
62
+ accelerated computing instances available on Amazon EC2. With the
63
+ SageMaker Python SDK, you can start training with just a single line of
64
+ code, enabling your teams to move from idea to production more quickly.
65
+ </p>
66
+ <p class="mb-2">
67
+ To deploy Hugging Face models in Amazon SageMaker, you can use the
68
+ Hugging Face Deep Learning Containers with the new Hugging Face
69
+ Inference Toolkit.
70
+ </p>
71
+ <p class="mb-2">
72
+ With the new Hugging Face Inference DLCs, deploy your trained models for
73
+ inference with just one more line of code, or select any of the 10,000+
74
+ models publicly available on the 🤗 Hub, and deploy them with Amazon
75
+ SageMaker, to easily create production-ready endpoints that scale
76
+ seamlessly, with built-in monitoring and enterprise-level security.
77
+ </p>
78
+ <p>
79
+ More information: <a
80
+ href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
81
+ class="underline">AWS blog post</a
82
+ >,
83
+ <a
84
+ href="https://discuss.huggingface.co/c/sagemaker/17"
85
+ class="underline">Community Forum</a
86
+ >
87
+ </p>
88
+ </div>
89
+ </div>