Spaces:
Sleeping
Sleeping
File size: 37,175 Bytes
cff4f35 20e77aa cff4f35 20e77aa cff4f35 a09bc3d 20e77aa 44e9d9d a09bc3d 7378375 cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa 44e9d9d 20e77aa cff4f35 20e77aa 5aa83ed 20e77aa 99d7669 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa 6386346 20e77aa 6386346 20e77aa 2470160 5aa83ed 2470160 5aa83ed 20e77aa 2470160 5aa83ed 2470160 5aa83ed 20e77aa 99d7669 20e77aa 99d7669 b28f99d 20e77aa a09bc3d cff4f35 20e77aa fa2a049 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa 5aa83ed 20e77aa 5aa83ed cff4f35 20e77aa cff4f35 20e77aa f6381e5 20e77aa f6381e5 20e77aa 30907a6 f6381e5 20e77aa fa2a049 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa cff4f35 20e77aa f6381e5 20e77aa cff4f35 20e77aa cff4f35 20e77aa 58219ef 20e77aa a07b3ab 20e77aa cff4f35 18f3df2 b28f99d cff4f35 b28f99d 20e77aa cff4f35 20e77aa a09bc3d 20e77aa a09bc3d 20e77aa 36927f6 20e77aa 7378375 6386346 7378375 6386346 20e77aa cb6d66e 20e77aa a07b3ab 20e77aa c7a5b6e 20e77aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 |
import argparse
import os
import traceback
import logging
from functools import partial
from threading import Thread
import re # Added for parsing image tokens
import torch
from transformers import TextIteratorStreamer
from transformers import AutoModel, AutoProcessor
from PIL import Image
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
logging.getLogger("http").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
import gradio as gr
import spaces
from conversation import default_conversation, conv_templates, SeparatorStyle
# --- Global Variables and Model Loading ---
model = None # Global variable to hold the loaded ILLUME model
args = None # Global variable to hold command line args
streamer = None # Global variable to hold command line args
DEFAULT_IMAGE_TOKEN = '<image>'
# Define common resolutions
DEFAULT_RESOLUTIONS = [
(256, 256), (512, 512), (384, 640), (640, 384), (512, 384),
(384, 512), (256, 384), (384, 256), (256, 512), (512, 256)
]
DEFAULT_DIFFUSION_RESOLUTIONS = [
(512, 512), (1024, 1024), (768, 1280), (1280, 768), (1024, 768),
(768, 1024), (512, 768), (768, 512), (512, 1024), (1024, 512)
]
conv_templates_version = 'qwen2'
# Adapted from your code
def check_image_token_num(image_embed_inds, token_nums=[81, 256], identifier=""):
image_embed_inds_out = []
if len(image_embed_inds) != len(token_nums):
logging.error(
f"{identifier} Mismatch between number of image token levels ({len(image_embed_inds)}) and expected token_nums ({len(token_nums)})")
# Handle error appropriately - maybe return None or raise exception
return None # Indicate error
for level, (embed_inds, token_num) in enumerate(zip(image_embed_inds, token_nums)):
if not len(embed_inds) == token_num:
logging.warning(
f"{identifier} Level {level} embed_inds length {len(embed_inds)} not equal to expected {token_num}! Padding/truncating.")
if len(embed_inds) > token_num:
embed_inds = embed_inds[:token_num]
elif len(embed_inds) == 0:
# Handle empty case - perhaps fill with a default token?
logging.warning(f"{identifier} Level {level} embed_inds is empty. Filling with zeros.")
embed_inds = [0] * token_num # Or a placeholder token ID
else:
# Pad with the last token ID
embed_inds.extend([embed_inds[-1]] * (token_num - len(embed_inds)))
image_embed_inds_out.append(embed_inds)
return image_embed_inds_out
# Adapted from your code
def pad_sequence(tokenizer, input_ids, batch_first, padding_value):
# Assuming input_ids is a list of Tensors
if tokenizer.padding_side == "left":
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids]
# Manually pad if needed, or use torch utils if input_ids are tensors
# This assumes input_ids are already tensors
input_ids_padded = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value)
if tokenizer.padding_side == "left":
input_ids_padded = torch.flip(input_ids_padded, [1])
return input_ids_padded
# --- Gradio UI Functions ---
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
server_error_msg = "**NETWORK ERROR OR SERVER ISSUE. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
server_oom_msg = "**OUT OF GPU MEMORY DETECTED. PLEASE DECREASE THE MAX OUTPUT TOKENS OR IMAGE RESOLUTION AND REGENERATE.**"
def load_demo_refresh_model_list():
logging.info("load_demo.")
# Use the conversation template from the loaded model/config
# Ensure model is loaded before this runs
if conv_templates_version in conv_templates:
state = conv_templates[conv_templates_version].copy()
logging.info(f"Using conversation template: {conv_templates_version}")
else:
logging.warning(f"Conversation template '{conv_templates_version}' not found. Using default.")
# Find a default template name from conv_templates or define one
default_template_name = next(iter(conv_templates)) # Get the first available template
state = conv_templates[default_template_name].copy()
return state
def regenerate(state): # Added resolution_wh
logging.info("regenerate.")
if not state.messages or len(state.messages) < 2:
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 2 # Use state's image
# Clear the last assistant message
state.messages[-1][-1] = None
state.skip_next = False
# Return state, updated chatbot display, refill textbox, keep image
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 2
def http_bot_conditional_then(state, temperature, top_k, top_p,
image_gen_temperature, image_gen_top_k, image_gen_top_p, max_output_tokens,
llm_cfg_scale, resolution_wh, use_diffusion, diffusion_cfg_scale,
diffusion_num_inference_steps):
if state.mode == 'chat':
result = yield from http_chat_bot(state, temperature, top_k, top_p, max_output_tokens)
else:
# result = yield from http_gen_edit_bot(state, temperature, top_k, top_p, max_output_tokens,
result = yield from http_gen_edit_bot(
state, temperature, top_k, top_p, image_gen_temperature, image_gen_top_k, image_gen_top_p,
max_output_tokens,
llm_cfg_scale, resolution_wh, use_diffusion, diffusion_cfg_scale, diffusion_num_inference_steps)
return result
def clear_history():
logging.info("clear_history.")
state = load_demo_refresh_model_list()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 2
def add_text(state, text, image, mode):
global model # Ensure we use the loaded model
logging.info(f"add_text. Text len: {len(text)}, Image provided: {image is not None}")
if len(text.strip()) == 0 and image is None:
state.skip_next = True
# Keep image in the imagebox if only image was present
return (state, state.to_gradio_chatbot(), "", image) + (no_change_btn,) * 2
if state.messages and state.messages[-1][1] and \
isinstance(state.messages[-1][1], str) and state.messages[-1][1].startswith("**"):
state = load_demo_refresh_model_list() # Start fresh after error
if mode == 'image-generation':
state = load_demo_refresh_model_list()
image_process_mode = "Default"
if image is not None:
if state.get_images():
state = load_demo_refresh_model_list()
if '<image>' not in text:
text = f'<image>\n{text}'
text = (text, image, image_process_mode)
# Append user message
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None) # Placeholder for assistant
state.skip_next = False
state.mode = mode
logging.info(f"Updated state messages: {len(state.messages)}")
# Return new state, updated chatbot, clear textbox, clear imagebox
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 2
def stream_response(model, inputs, streamer, prompt, gen_kwargs):
thread = Thread(target=model.generate, kwargs=dict(
streamer=streamer,
**inputs,
**gen_kwargs
))
thread.start()
generated_text = prompt
for new_text in streamer:
generated_text += new_text
yield generated_text
@spaces.GPU
def http_chat_bot(state, temperature, top_k, top_p, max_new_tokens):
global model, args, streamer # Use global model and args
logging.info("http_chat_bot.")
if state.skip_next:
logging.warning("Skipping bot generation. skip_next or model not ready.")
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
return
if len(state.messages) < 2:
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
return
# --- Prepare Inputs for ILLUME ---
# Get the full prompt from the conversation state
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
logging.info(f"Raw Prompt: {prompt}")
inputs = dict(
text=prompt,
)
# Tokenize the prompt
# run processors
inputs = processor(**inputs, return_tensors="pt")
inputs = inputs.to(model.device)
# avoid mismatch resolution. process the images alone
if len(all_images):
images = []
for image in all_images:
images.append(processor.image_processor(image, return_tensors="pt")['pixel_values'].to(model.device))
pixel_values = images
inputs['pixel_values'] = pixel_values
logging.info(f"Input IDs shape: {inputs.input_ids.shape}")
# Set initial response placeholder
state.messages[-1][-1] = "β"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
# --- MLLM Generation ---'
gen_kwargs = dict(
pad_token_id=processor.tokenizer.pad_token_id,
do_sample=True if temperature > 0 else False, # Controlled by dynamic sampler now, but keep flag
temperature=temperature,
top_k=top_k,
top_p=top_p,
max_new_tokens=max_new_tokens,
use_cache=True,
eos_token_id=processor.tokenizer.eos_token_id # Ensure EOS token is set
)
logging.info(f"==== request kwargs====\n{gen_kwargs}")
if max_new_tokens < 1:
state.messages[-1][-1] = "Exceeds max token length. Please start a new conversation, thanks."
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
return
state.messages[-1][-1] = "β"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
# Stream output
try:
for generated_text in stream_response(model, inputs, streamer, prompt, gen_kwargs):
output = generated_text[len(prompt):].strip()
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
except Exception as e:
os.system("nvidia-smi")
logging.info(traceback.print_exc())
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
return (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
@torch.inference_mode()
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
def http_gen_edit_bot(state, temperature, top_k, top_p, image_gen_temperature,
image_gen_top_k, image_gen_top_p, max_output_tokens,
llm_cfg_scale, resolution_wh, use_diffusion, diffusion_cfg_scale, diffusion_num_inference_steps):
global model, args # Use global model and args
logging.info("http_gen_edit_bot.")
if state.skip_next:
logging.warning("Skipping bot generation. skip_next or model not ready.")
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
return
if len(state.messages) < 2:
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
return
# --- Prepare Inputs for ILLUME ---
# Get the full prompt from the conversation state
all_images = state.get_images(return_pil=True)
# read resolution from user defined.
h_str, w_str = resolution_wh.split('x')
h_out, w_out = int(h_str), int(w_str)
if use_diffusion:
h_out, w_out = (h_out // 2, w_out // 2)
else:
h_out, w_out = (h_out, w_out)
ratio_tag = f"<height_{h_out}><width_{w_out}>"
input_state = state.copy()
# prepare the text.
original_image_sizes = None
if len(all_images):
# image editing.
original_image_sizes = [image.size for image in all_images]
logging.info(f"original_image_sizes: {original_image_sizes}")
all_images = [processor.transform_image_nearest_resolution_ratio(image) for image in all_images]
inputs = dict(
images=all_images
)
image_inputs = processor.image_processor(**inputs, return_tensors="pt")
image_inputs = image_inputs.to(model.device)
# overwrite the output resolution
h, w = image_inputs['pixel_values'].shape[-2:]
ratio_tag = f"<height_{h}><width_{w}>"
h_out, w_out = h, w
unconditional_text = f"{ratio_tag}{DEFAULT_IMAGE_TOKEN}\nReconstruct the image according to the given image\n" # of {ratio_tag}
instruction, img, image_process_type = input_state.messages[-2][-1]
instruction = instruction.replace(DEFAULT_IMAGE_TOKEN, '').strip()
text = f"{ratio_tag}{DEFAULT_IMAGE_TOKEN}\nPlease edit the image according to the instruction: {instruction}\n"
input_state.messages[-2][-1] = text, img, image_process_type
else:
# image generation
unconditional_text = f"Generate a random image of {ratio_tag}"
text = input_state.messages[-2][-1]
logging.info(f"Current text is {text}")
text = f"Generate an image of {ratio_tag}, the content of image is {text}"
input_state.messages[-2][-1] = text
logging.info(f"After formating. current text is {text}")
image_inputs = {}
# Calculate ratio tag based on base resolution from config
logging.info(f"Target Resolution: {h_out}x{w_out}, Ratio Tag: {ratio_tag}")
target_image_resolution = (h_out, w_out)
prompt = input_state.get_prompt()
logging.info(f"Raw Prompt: {prompt}")
# Tokenize the prompt
inputs = dict(
text=prompt + ratio_tag,
)
inputs = processor(**inputs, return_tensors="pt")
inputs = inputs.to(model.device)
inputs.update(image_inputs)
conv_uncond = conv_templates[conv_templates_version].copy()
conv_uncond.append_message(conv_uncond.roles[0], unconditional_text)
conv_uncond.append_message(conv_uncond.roles[1], None)
unconditional_prompt_str = conv_uncond.get_prompt() # Add ratio tag
uncond_inputs = dict(
text=unconditional_prompt_str + ratio_tag,
images=all_images
)
uncond_inputs = processor(**uncond_inputs, return_tensors="pt")
uncond_inputs = uncond_inputs.to(model.device)
logging.info(f"Input IDs shape: {inputs.input_ids.shape}")
# Set initial response placeholder
state.messages[-1][-1] = "image generating..."
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
gen_kwargs = dict(
max_new_tokens=2048,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
image_gen_kwargs = dict(
negative_image_prompt_ids=uncond_inputs.input_ids,
negative_image_prompt_attention_mask=uncond_inputs.attention_mask,
target_image_resolution=target_image_resolution,
guidance_scale=llm_cfg_scale,
image_semantic_temperature=image_gen_temperature,
image_semantic_top_k=image_gen_top_k,
image_semantic_top_p=image_gen_top_p,
image_pixel_temperature=image_gen_temperature,
image_pixel_top_k=image_gen_top_k * 3,
image_pixel_top_p=image_gen_top_p,
)
# --- MLLM Generation ---
generated_image = None
generated_text = ""
try:
from transformers import set_seed
set_seed(42)
with torch.inference_mode(): # Ensure no gradients are calculated
output_ids = model.generate(
**inputs,
use_cache=True,
**gen_kwargs,
**image_gen_kwargs
)
output_ids = output_ids[:, inputs['input_ids'].shape[1]:]
logging.info(f"Generated output IDs shape: {output_ids.shape}")
# Decode the generated IDs, skipping prompt and special tokens
# We need to decode the full output first to parse image tokens
# output_ids shape is likely (batch_size, seq_len), batch_size=1 here
generated_ids = output_ids[0] # Get only generated tokens
full_output_text = processor.tokenizer.decode(generated_ids, skip_special_tokens=True)
logging.info(f"Full decoded output: {full_output_text}")
# --- Parse Output for Image Tokens and Text ---
# Ensure levels are sorted and create the final list
generated_text, image_embed_inds_list, list_image_token_parts = processor.parse_text_image(full_output_text,
DEFAULT_IMAGE_TOKEN)
assert len(image_embed_inds_list) == 1, 'The number of generated image should be 1.'
image_embed_inds = image_embed_inds_list[0]
logging.info(f"The generated text: {full_output_text}")
logging.info(f"Parsed generated text (image presents as {DEFAULT_IMAGE_TOKEN}): {generated_text}")
# Update chat with generated text first
state.messages[-1][-1] = "vision tokenizer decoding..." # Remove cursor
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2 # Yield text update
# --- Image Detokenization ---
if any(image_embed_inds):
logging.info("Image tokens found. Attempting detokenization...")
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 2
samples = processor.decode_images(image_embed_inds_list, target_resolution=target_image_resolution,
use_diffusion=use_diffusion, diffusion_cfg_scale=diffusion_cfg_scale,
diffusion_num_inference_steps=diffusion_num_inference_steps)
generated_image = samples[0]
if use_diffusion:
logging.info(
f"Using Diffusion Decoder (cfg: {diffusion_cfg_scale}, steps: {diffusion_num_inference_steps}) Image size: {generated_image.size}")
else:
logging.info(f"Using VQ Tokenizer Decoder. Image size: {generated_image.size}")
if generated_image:
if original_image_sizes is not None and len(
original_image_sizes) == 1: # editing task, unpad and resize image to original size
original_size = original_image_sizes[0]
logging.info(f"original size: {original_size}. Output Image size: {generated_image.size}")
generated_image = processor.unpad_and_resize_back(generated_image, original_size[0], original_size[1])
logging.info(f"final image size: {generated_image.size}")
logging.info("Image successfully generated.")
# <image> is placeholder.
logging.info("Image successfully generated.")
# <image> is placeholder.
state.messages[-1][-1] = (DEFAULT_IMAGE_TOKEN, [generated_image], list_image_token_parts)
else:
# No image tokens generated
state.messages[-1][-1] = generated_text # Final text without image
# Final yield with potentially updated message (text + image)
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
except torch.cuda.OutOfMemoryError as e:
logging.error(f"CUDA OutOfMemoryError during generation: {e}\n{traceback.format_exc()}")
state.messages[-1][-1] = server_oom_msg
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
except Exception as e:
logging.error(f"Error during model generation or detokenization: {e}\n{traceback.format_exc()}")
state.messages[-1][-1] = f"{server_error_msg}\n```\n{traceback.format_exc()}\n```" # Show traceback in error
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 2
logging.info(f"Final Assistant Message Length: {len(state.messages[-1][-1])}")
def update_resolution_dropdown(diffusion_enabled, current_resolution_str):
logging.info(f"Updating resolution dropdown. Diffusion: {diffusion_enabled}, Current: {current_resolution_str}")
current_h_str, current_w_str = current_resolution_str.split('x')
current_h, current_w = int(current_h_str), int(current_w_str)
if diffusion_enabled:
new_h, new_w = int(current_h) * 2, int(current_w) * 2
if (new_h, new_w) not in DEFAULT_DIFFUSION_RESOLUTIONS:
new_h, new_w = DEFAULT_DIFFUSION_RESOLUTIONS[0]
new_value_str = f"{new_h}x{new_w}"
return gr.Dropdown(
choices=[f'{h}x{w}' for h, w in DEFAULT_DIFFUSION_RESOLUTIONS],
value=new_value_str,
label="Output Resolution (HxW)",
elem_id="resolution_dropdown",
info="Select target size for generated images."
)
else:
new_h, new_w = int(current_h) // 2, int(current_w) // 2
if (new_h, new_w) not in DEFAULT_RESOLUTIONS:
new_h, new_w = DEFAULT_RESOLUTIONS[0]
new_value_str = f"{new_h}x{new_w}"
return gr.Dropdown(
choices=[f'{h}x{w}' for h, w in DEFAULT_RESOLUTIONS],
value=new_value_str,
label="Output Resolution (HxW)",
elem_id="resolution_dropdown",
info="Select target size for generated images."
)
# --- Gradio Layout ---
title_markdown = """
<div style="display: flex; align-items: center; padding: 20px; border-radius: 10px; background-color: #f0f0f0;">
<div>
<h1 style="margin: 0;"> ILLUME+: Illuminating Unified MLLM with Dual Visual Tokenization and Diffusion Refinement</h1>
<h2 style="margin: 10px 0;">
<a href="https://arxiv.org/abs/2504.01934" target="_blank" rel="noopener noreferrer">Paper</a> |
<a href="https://github.com/illume-unified-mllm/ILLUME_plus" target="_blank" rel="noopener noreferrer">Code</a> |
<a href="https://huggingface.co/ILLUME-MLLM/illume_plus-qwen2_5-3b-hf" target="_blank" rel="noopener noreferrer">Model</a> |
<a href="https://illume-unified-mllm.github.io/" target="_blank" rel="noopener noreferrer">Project Page</a>
</h2>
<ul style="margin: 20px 0; padding-left: 20px;">
<li><strong>1.</strong> Enter text and/or upload an image.</li>
<li><strong>2.</strong> Click the π¬ <strong>Chat</strong> button for image inputted conversations</li>
<li><strong>3.</strong> Click the πΌοΈ <strong>Generate</strong> for image generation and image editing.</li>
<li><strong>4.</strong> (Optional) Enable Diffusion Decoder for image super resolution decoding.
<li><strong>5.</strong> Adjust generation parameters if needed.
<br/><strong>π‘ Tip 1:</strong> For better image generation quality, we recommend setting <code>temperature = 1.0</code>, <code>top_k = 2048</code>, <code>top_p = 1.0</code>, <code>llm_cfg = 2.0</code>.
<br/><strong>π‘ Tip 2:</strong> For better image editing quality, we recommend setting <code>temperature = 0.7</code>, <code>top_k = 512</code>, <code>top_p = 0.8</code>, <code>llm_cfg = 1.5</code>.
<br/><strong>π‘ Tip 3:</strong> For diffusion decoder, CFG scale of 1.5 or 2.0 is enough.
</li>
</ul>
</div>
</div>
"""
learn_more_markdown = ("""
## Citation
@article{huang2025illume_plus,
title={ILLUME+: Illuminating Unified MLLM with Dual Visual Tokenization and Diffusion Refinement},
author={Huang, Runhui and Wang, Chunwei and Yang, Junwei and Lu, Guansong and Yuan, Yunlong and Han, Jianhua and Hou, Lu and Zhang, Wei and Hong, Lanqing and Zhao, Hengshuang and Xu, Hang}
journal={arXiv preprint arXiv:2504.01934},
year={2025}
}
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
.message-row img {
max-width: 80% !important;
max-height: 400px !important;
height: auto !important;
width: auto !important;
display: block !important;
margin-top: 10px !important;
margin-bottom: 5px !important;
border-radius: 5px !important;
border: 1px solid #e0e0e0 !important;
object-fit: contain !important;
aspect-ratio: auto !important;
}
.avatar-container img {
padding: 0px !important;
}
/* Style for resolution dropdown */
#resolution_dropdown .gradio-dropdown {
min-width: 150px !important;
}
"""
def build_demo(embed_mode):
textbox = gr.Textbox(label="Text Input / Prompt", show_label=False,
placeholder="Enter text prompt. Ask about the image or request image generation...",
container=False, scale=8)
with gr.Blocks(title="ILLUME Demo", theme=gr.themes.Default(), css=block_css) as demo:
conversation_state = gr.State() # Holds conversation state (instance of illume.conversation.Conversation)
if not embed_mode:
gr.HTML(title_markdown)
with gr.Row():
with gr.Column(scale=2):
imagebox = gr.Image(type="pil", label="Input Image", height=300)
# Text Generation Parameters
with gr.Accordion("Text Generation Parameters", open=True):
temperature = gr.Slider(
minimum=0.0, maximum=1.5, value=1.0, step=0.1,
label="Temperature",
info="Controls randomness of the output (higher = more diverse)."
)
top_k = gr.Slider(
minimum=1, maximum=4096, value=128, step=1,
label="Top-K",
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=1.0, step=0.05,
label="Top-P",
)
max_output_tokens = gr.Slider(
minimum=128, maximum=8192, value=1024, step=128,
label="Max Output Tokens",
)
# Image Generation Parameters
with gr.Accordion("Image Generation Parameters", open=True):
image_gen_temperature = gr.Slider(
minimum=0.0, maximum=1.5, value=1.0, step=0.1,
label="Temperature",
)
image_gen_top_k = gr.Slider(
minimum=1, maximum=4096 * 2, value=2048, step=32,
label="Top-K",
info="Recommended value for better image generation: 2048."
)
image_gen_top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=1.0, step=0.05,
label="Top-P",
)
resolution_wh_dropdown = gr.Dropdown(
choices=[f'{h}x{w}' for h, w in DEFAULT_RESOLUTIONS],
value="512x512",
label="Output Resolution (HxW)",
elem_id="resolution_dropdown",
info="Select target size for generated images."
)
llm_cfg_scale = gr.Slider(
minimum=1.0, maximum=10.0, value=2.0, step=0.1,
label="LLM CFG Scale",
info="Guidance for text-to-image conditioning (higher = stricter to prompt)."
)
with gr.Accordion("Diffusion Decoder (Optional)", open=False):
use_diffusion_checkbox = gr.Checkbox(
value=False, interactive=True,
label="Use diffusion decoder for image generation",
info="Enable diffusion decoder."
)
diffusion_cfg_scale = gr.Slider(
minimum=1.0, maximum=15.0, value=2.0, step=0.1,
label="Diffusion CFG Scale",
info="Guidance strength for diffusion decoder."
)
diffusion_num_inference_steps = gr.Slider(
minimum=5, maximum=100, value=20, step=5,
label="Diffusion Inference Steps",
info="Number of steps during denoising."
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="ILLUME Chat",
layout="bubble",
height=650, # Increased height
bubble_full_width=False,
render_markdown=True # Crucial for images
)
with gr.Row():
textbox.render()
with gr.Row(elem_id="buttons") as button_row:
chat_btn = gr.Button(value="π¬ Chat", variant="primary")
gen_btn = gr.Button(value="πΌοΈ Generate", variant="secondary")
with gr.Row(elem_id="additional-buttons") as button_row_additional:
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear History", interactive=False)
# Update examples for ILLUME
with gr.Accordion("Examples (Click to Load)", open=True):
with gr.Row():
gr.Examples(examples=[
["examples/ImageUnderstandingExample/images/1.png",
"What are they doing?"],
["examples/ImageUnderstandingExample/images/2.png",
"Depict the image in detail."],
["examples/ImageUnderstandingExample/images/3.png",
"parse the table"],
], inputs=[imagebox, textbox], label='Image Understanding Examples')
gr.Examples(examples=[
[None, "a cat with a hat."],
[None, "a smiling child."],
[None, "tiger cub playing with soccer ball"],
[None, "screenshot from a 16 bit platform game in a lush green landscape"],
[None, "Old car in kandy sri lanka,lake road,flower, bright, sunny, orange sky"],
[None, "Create a vibrant painting of a tropical beach at sunset."],
], inputs=[imagebox, textbox], label='Image Generation Examples')
gr.Examples(examples=[
["examples/EditingSingleTurnExample/images/0.jpg",
"Change the color of the boots to a deep forest green"],
["examples/EditingSingleTurnExample/images/1.jpg",
"Add a hat on the dog"],
["examples/EditingSingleTurnExample/images/2.jpg",
"Remove the dried flowers"],
["examples/EditingSingleTurnExample/images/3.jpg",
"Change it into winter"],
["examples/EditingSingleTurnExample/images/4.jpg",
"Delete the tennis racket from the man's hand"],
["examples/EditingSingleTurnExample/images/5.jpg",
"Show me this as it would appear in a comic book"],
], inputs=[imagebox, textbox], label='Image Editing Examples')
if not embed_mode:
gr.Markdown(learn_more_markdown)
# Register listeners
btn_list = [regenerate_btn, clear_btn]
parameter_chat_inputs = [temperature, top_k, top_p, max_output_tokens]
parameter_gen_edit_inputs = [temperature, top_k, top_p,
image_gen_temperature, image_gen_top_k, image_gen_top_p, max_output_tokens,
llm_cfg_scale, resolution_wh_dropdown,
use_diffusion_checkbox, diffusion_cfg_scale, diffusion_num_inference_steps]
regenerate_btn.click(
regenerate,
[conversation_state],
[conversation_state, chatbot, textbox, imagebox] + btn_list
).then(
http_bot_conditional_then,
[conversation_state] + parameter_gen_edit_inputs, # Pass state and all params
[conversation_state, chatbot] + btn_list,
)
clear_btn.click(
clear_history,
None,
[conversation_state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
# Default use chat.
textbox.submit(
partial(add_text, mode="chat"),
[conversation_state, textbox, imagebox],
[conversation_state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_chat_bot,
[conversation_state] + parameter_chat_inputs,
[conversation_state, chatbot] + btn_list,
)
# Regular Vision-language Chat
chat_btn.click(partial(add_text, mode="chat"),
[conversation_state, textbox, imagebox],
[conversation_state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_chat_bot,
[conversation_state] + parameter_chat_inputs,
[conversation_state, chatbot] + btn_list,
)
# Image Generation
gen_btn.click(
partial(add_text, mode="image-generation"),
[conversation_state, textbox, imagebox],
[conversation_state, chatbot, textbox, imagebox] + btn_list
).then(
http_gen_edit_bot,
[conversation_state] + parameter_gen_edit_inputs,
[conversation_state, chatbot] + btn_list
)
use_diffusion_checkbox.change(
fn=update_resolution_dropdown,
inputs=[use_diffusion_checkbox, resolution_wh_dropdown],
outputs=resolution_wh_dropdown,
queue=False
)
# Load initial state when demo starts
demo.load(
load_demo_refresh_model_list,
None,
conversation_state,
queue=False
)
return demo
# --- Main Execution Block ---
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# --- Add arguments for ILLUME configs and checkpoints ---
parser.add_argument("--model_name", type=str, default="ILLUME-MLLM/illume_plus-qwen2_5-3b-hf",
help="Name for builder.")
parser.add_argument("--torch_dtype", type=str, default='fp32', choices=['fp32', 'bf16', 'fp16'],
help="Computation data type.")
parser.add_argument("--diffusion_decoder_path", type=str, default='ILLUME-MLLM/dualvitok-sdxl-decoder',
help="Path to Diffusion Decoder checkpoint. Required if using diffusion.")
parser.add_argument("--tokenizer_path", type=str, default='ILLUME-MLLM/dualvitok',
help="Path to Tokenizer config file (e.g., tokenizer_config.py).")
# --- End ILLUME arguments ---
parser.add_argument("--share", action="store_true", help="Create a public Gradio share link")
parser.add_argument("--embed", action="store_true", help="Run in embed mode (minimal UI)")
parser.add_argument("--device", type=str, default="cuda", help="Device to run on (cuda, cpu).")
args = parser.parse_args()
# --- Model Loading ---
# --- Model Loading ---set
# Set device
device = args.device
logging.info(f"Using device: {device}")
args.torch_dtype = dict(fp16=torch.float16, fp32=torch.float32, bf16=torch.bfloat16)[args.torch_dtype]
# Build the ILLUME model instance
logging.info("Building ILLUME model...")
# prepare models and processors
model = AutoModel.from_pretrained(
args.model_name,
torch_dtype=torch.bfloat16,
# attn_implementation='flash_attention_2', # OR 'sdpa' for Ascend NPUs
# torch_dtype=args.torch_dtype,
attn_implementation='sdpa', # OR 'sdpa' for Ascend NPUs
low_cpu_mem_usage=True,
trust_remote_code=True).eval().to(torch.bfloat16).cuda()
processor = AutoProcessor.from_pretrained(args.model_name, trust_remote_code=True)
# set the vision tokenizer for decoding image.
dualvitok = AutoModel.from_pretrained(args.tokenizer_path,
torch_dtype=torch.float32,
trust_remote_code=True,
).eval().cuda()
processor.set_vision_tokenizer(dualvitok)
# (Optional): set the sdxl diffusion decoder. It will enable upsample 2x image resolution.
processor.load_diffusion_vision_detokenizer(args.diffusion_decoder_path)
# Assign device to model for later use
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
logging.info("ILLUME model built successfully.")
demo = build_demo(args.embed)
demo.queue(
max_size=10,
api_open=False
).launch(
share=args.share,
)
|