ILLUME_plus-3b / conversation.py
huangrh9's picture
Upload conversation.py
8e8989f verified
import dataclasses
from enum import auto, Enum
from typing import List, Tuple
import base64
from io import BytesIO
from PIL import Image
import re
def replace_last(original_string, target, replacement):
last_index = original_string.rfind(target)
if last_index == -1:
return original_string
before = original_string[:last_index]
after = original_string[last_index + len(target):]
return before + replacement + after
def replace_sequentially_regex(original_string, target, content_list):
# 创建 content_list 的迭代器
replacements_iter = iter(content_list)
def get_replacement(match):
try:
return str(next(replacements_iter)) # 确保替换内容是字符串
except StopIteration:
return match.group(0)
new_string = re.sub(re.escape(target), get_replacement, original_string)
return new_string
def replace_ratio_tags_in_text(text):
# The pattern remains the same, capturing the two numbers
pattern = r"<height_(\d+)><width_(\d+)>"
# Define a helper function that will be called for each match
# This function receives the match object as input
def _replacer_function(match, resolution_indicator=64):
try:
# Extract captured groups (height and width numbers as strings)
h_tag_str = match.group(1)
w_tag_str = match.group(2)
# Convert to integers
h_tag = int(h_tag_str)
w_tag = int(w_tag_str)
# Calculate final dimensions
h = h_tag * resolution_indicator
w = w_tag * resolution_indicator
# Return the replacement string for this specific match
return f'{h}x{w}'
except (ValueError, IndexError):
# In case of unexpected errors (e.g., regex issue, conversion error)
# return the original matched text to avoid breaking the string
# match.group(0) returns the entire substring that matched the pattern
print(f"Warning: Could not process tag '{match.group(0)}'. Keeping original.")
return match.group(0)
# Use re.sub() to find all matches of the pattern in the text
# and replace each match using the result of _replacer_function
processed_text = re.sub(pattern, _replacer_function, text)
return processed_text
def process_think_answer_tag_for_gradio(input_text):
# Replace <think></think> and <answer></answer> with collapsible sections
output_text = input_text.replace(
"<think>",
'<div class="collapsible"><button class="collapsible-btn">Think</button><div class="content">').replace(
"</think>", "</div></div>"
)
output_text = output_text.replace(
"<answer>",
'<div class="collapsible"><button class="collapsible-btn">Answer</button><div class="content">').replace(
"</answer>", "</div></div>"
)
return output_text
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
MPT = auto()
PLAIN = auto()
LLAMA_2 = auto()
GLM4 = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
sep2: str = None
version: str = "Unknown"
skip_next: bool = False
def get_prompt(self):
messages = self.messages
if len(messages) > 0 and type(messages[0][1]) is tuple:
messages = self.messages.copy()
# init_role, init_msg = messages[0].copy()
# init_msg = init_msg[0].replace("<image>", "").strip()
# if 'mmtag' in self.version:
# messages[0] = (init_role, init_msg)
# messages.insert(0, (self.roles[0], "<Image><image></Image>"))
# messages.insert(1, (self.roles[1], "Received."))
# else:
# messages[0] = (init_role, "<image>\n" + init_msg)
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system + self.sep
for role, message in messages:
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + self.sep
else:
ret += role + ":"
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
elif self.sep_style == SeparatorStyle.MPT:
ret = self.system + self.sep
for role, message in messages:
if message:
if role == self.roles[0]:
if type(message) is tuple:
message, _, _ = message
ret += role + message + self.sep
else:
if type(message) is tuple:
# process the discrete image token in the output.
message, _, image_token_lists = message
message = replace_sequentially_regex(message, '<image>', image_token_lists)
ret += role + message + self.sep
else:
ret += role
elif self.sep_style == SeparatorStyle.LLAMA_2:
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
ret = ""
for i, (role, message) in enumerate(messages):
if i == 0:
assert message, "first message should not be none"
assert role == self.roles[0], "first message should come from user"
if message:
if type(message) is tuple:
message, _, _ = message
if i == 0: message = wrap_sys(self.system) + message
if i % 2 == 0:
message = wrap_inst(message)
ret += self.sep + message
else:
ret += " " + message + " " + self.sep2
else:
ret += ""
ret = ret.lstrip(self.sep)
elif self.sep_style == SeparatorStyle.PLAIN:
seps = [self.sep, self.sep2]
ret = self.system
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += message + seps[i % 2]
else:
ret += ""
elif self.sep_style == SeparatorStyle.GLM4:
role = ("<|user|>", "<|assistant|>")
ret = self.system + role[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += self.sep + message + role[(i + 1) % 2]
else:
ret += ""
else:
raise ValueError(f"Invalid style: {self.sep_style}")
return ret
def append_message(self, role, message):
if isinstance(self.messages, tuple):
self.messages += ([role, message],)
else:
self.messages.append([role, message])
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
if image_process_mode == "Pad":
def expand2square(pil_img, background_color=(122, 116, 104)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image)
elif image_process_mode in ["Default", "Crop"]:
pass
elif image_process_mode == "Resize":
image = image.resize((336, 336))
else:
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
if max(image.size) > max_len:
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
if return_pil:
return image
else:
buffered = BytesIO()
image.save(buffered, format=image_format)
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
return img_b64_str
def get_images(self, return_pil=False):
images = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
if type(msg) is tuple:
msg, image, image_process_mode = msg
image = self.process_image(image, image_process_mode, return_pil=return_pil)
images.append(image)
return images
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset:]):
if i % 2 == 0:
if type(msg) is tuple:
msg, image, image_process_mode = msg
img_b64_str = self.process_image(
image, "Default", return_pil=False,
image_format='JPEG')
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
msg = img_str + msg.replace('<image>', '').strip()
msg = replace_ratio_tags_in_text(msg)
ret.append([msg, None])
else:
if type(msg) is tuple:
msg, image, _ = msg
if not isinstance(image, list):
image = [image]
image_str_list = []
for img_idx, img in enumerate(image):
img_b64_str = self.process_image(
img, "Default", return_pil=False,
image_format='JPEG')
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="generated image {img_idx}" />'
image_str_list.append(img_str)
msg = replace_sequentially_regex(msg, '<image>', image_str_list)
if msg and 'think' in self.version:
msg = process_think_answer_tag_for_gradio(msg)
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
version=self.version)
def dict(self):
if len(self.get_images()) > 0:
return {
"system": self.system,
"roles": self.roles,
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
conv_vicuna_v0 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant"),
messages=(
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
("Assistant",
"Renewable energy sources are those that can be replenished naturally in a relatively "
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
"renewable and non-renewable energy sources:\n"
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
"energy sources are finite and will eventually run out.\n"
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
"and other negative effects.\n"
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
"have lower operational costs than non-renewable sources.\n"
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
"locations than non-renewable sources.\n"
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
),
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_vicuna_v1 = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
version="v1",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_llama_2 = Conversation(
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
roles=("USER", "ASSISTANT"),
version="llama_v2",
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="<s>",
sep2="</s>",
)
conv_llava_llama_2 = Conversation(
system="You are a helpful language and vision assistant. "
"You are able to understand the visual content that the user provides, "
"and assist the user with a variety of tasks using natural language.",
roles=("USER", "ASSISTANT"),
version="llama_v2",
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="<s>",
sep2="</s>",
)
conv_mpt = Conversation(
system="""<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="mpt",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>",
)
conv_llava_plain = Conversation(
system="",
roles=("", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.PLAIN,
sep="\n",
)
conv_llava_v0 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant"),
messages=(),
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_llava_v0_mmtag = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
"The visual content will be provided with the following format: <Image>visual content</Image>.",
roles=("Human", "Assistant"),
messages=(
),
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
version="v0_mmtag",
)
conv_llava_v1 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("USER", "ASSISTANT"),
version="v1",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_llava_v1_mmtag = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
"The visual content will be provided with the following format: <Image>visual content</Image>.",
roles=("USER", "ASSISTANT"),
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
version="v1_mmtag",
)
conv_mistral_instruct = Conversation(
system="",
roles=("USER", "ASSISTANT"),
version="llama_v2",
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="",
sep2="</s>",
)
conv_chatml_direct = Conversation(
system="""<|im_start|>system
Answer the questions.""",
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="mpt",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>",
)
conv_llama3 = Conversation(
system="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""",
roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
version="llama3",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|eot_id|>",
)
conv_llama3_without_system = Conversation(
system="",
roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
version="llama3_without_system",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|eot_id|>",
)
conv_llama3_base = Conversation(
system="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""",
roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
version="llama3_base",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|eot_id|>",
)
conv_llama3_expand = Conversation(
system="""[BOS]SYSTEM\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""",
roles=("[BOS]USER:\n", "[BOS]ASSISTANT:\n"),
version="llama3_expand",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="[EOT]",
)
conv_llama3_expandv2 = Conversation(
system="""[BOS]SYSTEM\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""",
roles=("[BOS]USER:\n", "[BOS]ASSISTANT:\n"),
version="llama3_expand",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="[unused0]", # use different eos token.
)
conv_llama3_expandV2 = Conversation(
system="""[BOS]SYSTEM\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""",
roles=("[BOS]USER:\n", "[BOS]ASSISTANT:\n"),
version="llama3_expand",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="[unused0]",
)
conv_qwen2 = Conversation(
system='<|im_start|>system\nYou are a helpful assistant.',
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="qwen2",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>\n",
)
conv_qwen2_think = Conversation(
system='<|im_start|>system\nYou are a helpful assistant.'
"You will first thinks about the reasoning process in the mind and then provides the user with the answer. "
"The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
"<think> reasoning process here </think><answer> answer here </answer>",
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="qwen2_think",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>\n",
)
qwen2_image_gen_with_think = Conversation(
system='<|im_start|>system\nYou are a helpful assistant.'
"You will first thinks about the reasoning process in the mind and then provides the user with the answer. "
"The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
"<think> reasoning process here </think><answer> answer here </answer>. "
"If an image needs to be generated inside <think>, generate it at resolution <height_4><width_4>. "
"In <answer>, generate any requested images at the resolution specified by the user.",
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="qwen2_think",
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>\n",
)
conv_glm4 = Conversation(
system='[gMASK]<sop>',
roles=("<|user|>\n", "<|assistant|>"),
version="glm4",
messages=(),
offset=0,
sep_style=SeparatorStyle.GLM4,
sep="\n",
)
default_conversation = conv_vicuna_v1
conv_templates = {
"default": conv_vicuna_v0,
"v0": conv_vicuna_v0,
"v1": conv_vicuna_v1,
"vicuna_v1": conv_vicuna_v1,
"llama_2": conv_llama_2,
"mistral_instruct": conv_mistral_instruct,
"chatml_direct": conv_chatml_direct,
"mistral_direct": conv_chatml_direct,
"plain": conv_llava_plain,
"v0_plain": conv_llava_plain,
"llava_v0": conv_llava_v0,
"v0_mmtag": conv_llava_v0_mmtag,
"llava_v1": conv_llava_v1,
"v1_mmtag": conv_llava_v1_mmtag,
"llava_llama_2": conv_llava_llama_2,
"llama3": conv_llama3,
"llama3_without_system": conv_llama3_without_system,
"llama3_expand": conv_llama3_expand,
"llama3_expand_v2": conv_llama3_expandv2,
"llama3_base": conv_llama3_base,
"mpt": conv_mpt,
"qwen2": conv_qwen2,
"qwen2_think": conv_qwen2_think,
"qwen2_image_gen_with_think": conv_qwen2_think,
"glm4": conv_glm4,
}
if __name__ == "__main__":
print(default_conversation.get_prompt())