Spaces:
Sleeping
Sleeping
File size: 8,972 Bytes
8af136f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import nltk
nltk.download('punkt')
nltk.download('punkt_tab')
# SECTIONED URL LIST (in case we want to tag later)
url_dict = {
"Website Designing": [
"https://www.imageonline.co.in/website-designing-mumbai.html",
"https://www.imageonline.co.in/domain-hosting-services-india.html",
"https://www.imageonline.co.in/best-seo-company-mumbai.html",
"https://www.imageonline.co.in/wordpress-blog-designing-india.html",
"https://www.imageonline.co.in/social-media-marketing-company-mumbai.html",
"https://www.imageonline.co.in/website-template-customization-india.html",
"https://www.imageonline.co.in/regular-website-maintanence-services.html",
"https://www.imageonline.co.in/mobile-app-designing-mumbai.html",
"https://www.imageonline.co.in/web-application-screen-designing.html"
],
"Website Development": [
"https://www.imageonline.co.in/website-development-mumbai.html",
"https://www.imageonline.co.in/open-source-customization.html",
"https://www.imageonline.co.in/ecommerce-development-company-mumbai.html",
"https://www.imageonline.co.in/website-with-content-management-system.html",
"https://www.imageonline.co.in/web-application-development-india.html"
],
"Mobile App Development": [
"https://www.imageonline.co.in/mobile-app-development-company-mumbai.html"
],
"About Us": [
"https://www.imageonline.co.in/about-us.html",
"https://www.imageonline.co.in/vision.html",
"https://www.imageonline.co.in/team.html"
],
"Testimonials": [
"https://www.imageonline.co.in/testimonial.html"
]
}
import trafilatura
import requests
# Function to extract clean text using trafilatura
def extract_clean_text(url):
"""
Fetch and extract clean main content from a URL using trafilatura.
Returns None if content couldn't be extracted.
"""
try:
downloaded = trafilatura.fetch_url(url)
if downloaded:
content = trafilatura.extract(downloaded, include_comments=False, include_tables=False)
return content
except Exception as e:
print(f"Error fetching {url}: {e}")
return None
# Scrape data and prepare for RAG with metadata
scraped_data = []
for section, urls in url_dict.items():
for url in urls:
print(f"π© Scraping: {url}")
text = extract_clean_text(url)
if text:
print(f"β
Extracted {len(text)} characters.\n")
scraped_data.append({
"content": text,
"metadata": {
"source": url,
"section": section
}
})
else:
print(f"β Failed to extract content from {url}.\n")
print(f"Total pages scraped: {len(scraped_data)}")
import tiktoken
from nltk.tokenize import sent_tokenize
# Initialize GPT tokenizer (cl100k_base works with Together.ai and OpenAI APIs)
tokenizer = tiktoken.get_encoding("cl100k_base")
def chunk_text(text, max_tokens=400):
"""
Chunk text into overlapping segments based on sentence boundaries and token limits.
"""
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
for sentence in sentences:
current_chunk.append(sentence)
tokens = tokenizer.encode(" ".join(current_chunk))
if len(tokens) > max_tokens:
# Finalize current chunk without last sentence
current_chunk.pop()
chunks.append(" ".join(current_chunk).strip())
current_chunk = [sentence] # Start new chunk with overflow sentence
# Append final chunk
if current_chunk:
chunks.append(" ".join(current_chunk).strip())
return chunks
chunked_data = []
for item in scraped_data:
text = item["content"]
metadata = item["metadata"]
chunks = chunk_text(text, max_tokens=400)
for chunk in chunks:
chunked_data.append({
"content": chunk,
"metadata": metadata # Keep the same URL + section for each chunk
})
# Extract text chunks from chunked_data for embedding
texts_to_embed = [item["content"] for item in chunked_data]
from sentence_transformers import SentenceTransformer
# Load the embedding model
embedding_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
def embed_chunks(text_list, model):
"""
Generate embeddings for a list of text chunks.
"""
return model.encode(text_list, convert_to_numpy=True)
# Generate embeddings
embeddings = embed_chunks(texts_to_embed, embedding_model)
print(f"β
Generated {len(embeddings)} embeddings")
print(f"πΉ Shape of first embedding: {embeddings[0].shape}")
import chromadb
import uuid
# Initialize ChromaDB client (persistent storage)
chroma_client = chromadb.PersistentClient(path="./chroma_store")
# Create or get collection
collection = chroma_client.get_or_create_collection(name="imageonline_chunks")
# Extract documents, embeddings, metadatas
documents = [item["content"] for item in chunked_data]
metadatas = [item["metadata"] for item in chunked_data]
ids = [str(uuid.uuid4()) for _ in documents]
# Safety check
assert len(documents) == len(embeddings) == len(metadatas), "Data length mismatch!"
# Add to ChromaDB
collection.add(
documents=documents,
embeddings=embeddings.tolist(),
metadatas=metadatas,
ids=ids
)
# Sample query
query = "web design company"
query_embedding = embedding_model.encode([query])[0]
# Query ChromaDB
results = collection.query(
query_embeddings=[query_embedding.tolist()],
n_results=3
)
# Display results
for i in range(len(results['documents'][0])):
print(f"\nπ Match {i+1}:")
print(f"Content: {results['documents'][0][i][:200]}...")
print(f"π Metadata: {results['metadatas'][0][i]}")
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_together import ChatTogether
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
# Initialize vectorstore
embedding_function = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
vectorstore = Chroma(
client=chroma_client, # from your previous chroma setup
collection_name="imageonline_chunks",
embedding_function=embedding_function
)
# Create retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
def retrieve_and_format(query):
docs = retriever.get_relevant_documents(query)
context_strings = []
for doc in docs:
content = doc.page_content
metadata = doc.metadata
source = metadata.get("source", "")
section = metadata.get("section", "")
context_strings.append(f"[{section}] {content}\n(Source: {source})")
return "\n\n".join(context_strings)
llm = ChatTogether(
model="meta-llama/Llama-3-8b-chat-hf",
temperature=0.3,
max_tokens=1024,
top_p=0.7,
together_api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6" # Replace before deployment or use os.getenv
)
prompt = ChatPromptTemplate.from_template("""
You are an expert assistant for ImageOnline Web Solutions.
Answer the user's query based ONLY on the following context:
{context}
Query: {question}
""")
rag_chain = (
{"context": RunnableLambda(retrieve_and_format), "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
import gradio as gr
def chat_interface(message, history):
history = history or []
# Display user message
history.append(("π§ You: " + message, "β³ Generating response..."))
try:
# Call RAG pipeline
answer = rag_chain.invoke(message)
# Replace placeholder with actual response
history[-1] = ("π§ You: " + message, "π€ Bot: " + answer)
except Exception as e:
error_msg = f"β οΈ Error: {str(e)}"
history[-1] = ("π§ You: " + message, f"π€ Bot: {error_msg}")
return history, history
def launch_gradio():
with gr.Blocks() as demo:
gr.Markdown("# π¬ ImageOnline RAG Chatbot")
gr.Markdown("Ask about Website Designing, App Development, SEO, Hosting, etc.")
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
msg = gr.Textbox(placeholder="Ask your question here...", show_label=False, scale=8)
send_btn = gr.Button("π¨ Send", scale=1)
msg.submit(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
send_btn.click(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
with gr.Row():
clear_btn = gr.Button("π§Ή Clear Chat")
clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])
return demo
if __name__ == "__main__":
demo = launch_gradio()
demo.launch() |