Spaces:
Sleeping
Sleeping
File size: 6,595 Bytes
74bd715 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 306a4b3 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 58ebc0c 74bd715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os
import zipfile
import chromadb
import gradio as gr
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_together import ChatTogether
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
# Log: Check if chroma_store exists
if not os.path.exists("chroma_store"):
print("π chroma_store folder not found. Attempting to unzip...")
try:
with zipfile.ZipFile("chroma_store.zip", "r") as zip_ref:
zip_ref.extractall("chroma_store")
print("β
Successfully extracted chroma_store.zip.")
except Exception as e:
print(f"β Failed to unzip chroma_store.zip: {e}")
else:
print("β
chroma_store folder already exists. Skipping unzip.")
# Initialize ChromaDB client
chroma_client = chromadb.PersistentClient(path="./chroma_store")
# Vector store and retriever
embedding_function = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
vectorstore = Chroma(
client=chroma_client,
collection_name="imageonline_chunks",
embedding_function=embedding_function
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3, "filter": {"site": "imageonline"}})
# Retrieval logic
def retrieve_with_metadata(query, k=5):
docs = retriever.get_relevant_documents(query)
if not docs:
return {"context": "No relevant context found.", "references": []}
top_doc = docs[0]
return {
"context": top_doc.page_content,
"references": [{
"section": top_doc.metadata.get("section", "Unknown"),
"source": top_doc.metadata.get("source", "Unknown")
}]
}
# LLM setup
llm = ChatTogether(
model="meta-llama/Llama-3-8b-chat-hf",
temperature=0.3,
max_tokens=1024,
top_p=0.7,
together_api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6"
)
# Prompt template
prompt = ChatPromptTemplate.from_template("""
You are an expert assistant for ImageOnline Web Solutions.
Answer the user's query based ONLY on the following context:
{context}
Query: {question}
""")
rag_chain = (
{
"context": lambda x: retrieve_with_metadata(x)["context"],
"question": RunnablePassthrough()
}
| prompt
| llm
| StrOutputParser()
)
def get_references(query):
return retrieve_with_metadata(query)["references"]
# Gradio UI
# def chat_interface(message, history):
# history = history or []
# history.append(("π§ You: " + message, "β³ Generating response..."))
# try:
# answer = rag_chain.invoke(message)
# references = get_references(message)
# if references:
# ref = references[0]
# ref_string = f"\n\nπ **Reference:**\nSection: {ref['section']}\nURL: {ref['source']}"
# else:
# ref_string = "\n\nπ **Reference:**\n_None available_"
# full_response = answer + ref_string
# history[-1] = ("π§ You: " + message, "π€ Bot: " + full_response)
# except Exception as e:
# history[-1] = ("π§ You: " + message, f"π€ Bot: β οΈ {str(e)}")
# return history, history
from datetime import datetime
import time
def chat_interface(message, history):
history = history or []
# π Timestamp for user
timestamp = datetime.now().strftime("%H:%M:%S")
user_msg = f"π§ **You**\n{message}\n\n<span style='font-size: 0.8em; color: gray;'>β±οΈ {timestamp}</span>"
# β³ Show typing indicator
bot_msg = "β³ _Bot is typing..._"
history.append((user_msg, bot_msg))
try:
# π¬ Optional: simulate typing delay (cosmetic only)
time.sleep(0.5)
# RAG response generation
answer = rag_chain.invoke(message)
references = get_references(message)
if references:
ref = references[0]
ref_string = f"\n\nπ **Reference:**\nSection: {ref['section']}\nURL: {ref['source']}"
else:
ref_string = "\n\nπ **Reference:**\n_None available_"
full_response = answer + ref_string
# π Timestamp for bot
timestamp_bot = datetime.now().strftime("%H:%M:%S")
bot_response = f"π€ **Bot**\n{full_response}\n\n<span style='font-size: 0.8em; color: gray;'>β±οΈ {timestamp_bot}</span>"
# Replace typing placeholder
history[-1] = (user_msg, bot_response)
except Exception as e:
timestamp_bot = datetime.now().strftime("%H:%M:%S")
error_msg = f"π€ **Bot**\nβ οΈ {str(e)}\n\n<span style='font-size: 0.8em; color: gray;'>β±οΈ {timestamp_bot}</span>"
history[-1] = (user_msg, error_msg)
return history, history, "" # clear input box
# def launch_gradio():
# with gr.Blocks() as demo:
# gr.Markdown("# π¬ ImageOnline RAG Chatbot")
# gr.Markdown("Ask about Website Designing, Web Development, App Development, About Us, Testimonials etc.")
# chatbot = gr.Chatbot()
# state = gr.State([])
# with gr.Row():
# msg = gr.Textbox(placeholder="Ask your question here...", show_label=False, scale=8)
# send_btn = gr.Button("π¨ Send", scale=1)
# msg.submit(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
# send_btn.click(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
# with gr.Row():
# clear_btn = gr.Button("π§Ή Clear Chat")
# clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])
# return demo
def launch_gradio():
with gr.Blocks() as demo:
gr.Markdown("# π¬ ImageOnline RAG Chatbot")
gr.Markdown("Ask about Website Designing, Web Development, App Development, About Us, Testimonials etc.")
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
msg = gr.Textbox(
placeholder="Ask your question here...",
show_label=False,
scale=8
)
send_btn = gr.Button("π¨ Send", scale=1)
# π Trigger chat and clear input
msg.submit(chat_interface, inputs=[msg, state], outputs=[chatbot, state, msg])
send_btn.click(chat_interface, inputs=[msg, state], outputs=[chatbot, state, msg])
with gr.Row():
clear_btn = gr.Button("π§Ή Clear Chat")
clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])
return demo
demo = launch_gradio()
demo.launch() |