File size: 4,043 Bytes
74bd715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import zipfile
import chromadb
import gradio as gr
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_together import ChatTogether
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings

# Log: Check if chroma_store exists
if not os.path.exists("chroma_store"):
    print("πŸ” chroma_store folder not found. Attempting to unzip...")
    try:
        with zipfile.ZipFile("chroma_store.zip", "r") as zip_ref:
            zip_ref.extractall("chroma_store")
        print("βœ… Successfully extracted chroma_store.zip.")
    except Exception as e:
        print(f"❌ Failed to unzip chroma_store.zip: {e}")
else:
    print("βœ… chroma_store folder already exists. Skipping unzip.")

# Initialize ChromaDB client
chroma_client = chromadb.PersistentClient(path="./chroma_store")

# Vector store and retriever
embedding_function = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
vectorstore = Chroma(
    client=chroma_client,
    collection_name="imageonline_chunks",
    embedding_function=embedding_function
)

retriever = vectorstore.as_retriever(search_kwargs={"k": 3, "filter": {"site": "imageonline"}})

# Retrieval logic
def retrieve_with_metadata(query, k=5):
    docs = retriever.get_relevant_documents(query)
    if not docs:
        return {"context": "No relevant context found.", "references": []}
    top_doc = docs[0]
    return {
        "context": top_doc.page_content,
        "references": [{
            "section": top_doc.metadata.get("section", "Unknown"),
            "source": top_doc.metadata.get("source", "Unknown")
        }]
    }

# LLM setup
llm = ChatTogether(
    model="meta-llama/Llama-3-8b-chat-hf",
    temperature=0.3,
    max_tokens=1024,
    top_p=0.7,
    together_api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6"
)

# Prompt template
prompt = ChatPromptTemplate.from_template("""
You are an expert assistant for ImageOnline Web Solutions.

Answer the user's query based ONLY on the following context:

{context}

Query: {question}
""")

rag_chain = (
    {
        "context": lambda x: retrieve_with_metadata(x)["context"],
        "question": RunnablePassthrough()
    }
    | prompt
    | llm
    | StrOutputParser()
)

def get_references(query):
    return retrieve_with_metadata(query)["references"]

# Gradio UI
def chat_interface(message, history):
    history = history or []
    history.append(("πŸ§‘ You: " + message, "⏳ Generating response..."))
    try:
        answer = rag_chain.invoke(message)
        references = get_references(message)
        if references:
            ref = references[0]
            ref_string = f"\n\nπŸ“š **Reference:**\nSection: {ref['section']}\nURL: {ref['source']}"
        else:
            ref_string = "\n\nπŸ“š **Reference:**\n_None available_"
        full_response = answer + ref_string
        history[-1] = ("πŸ§‘ You: " + message, "πŸ€– Bot: " + full_response)
    except Exception as e:
        history[-1] = ("πŸ§‘ You: " + message, f"πŸ€– Bot: ⚠️ {str(e)}")
    return history, history

def launch_gradio():
    with gr.Blocks() as demo:
        gr.Markdown("# πŸ’¬ ImageOnline RAG Chatbot")
        gr.Markdown("Ask about Website Designing, App Development, SEO, Hosting, etc.")
        chatbot = gr.Chatbot()
        state = gr.State([])
        with gr.Row():
            msg = gr.Textbox(placeholder="Ask your question here...", show_label=False, scale=8)
            send_btn = gr.Button("πŸ“¨ Send", scale=1)
        msg.submit(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
        send_btn.click(chat_interface, inputs=[msg, state], outputs=[chatbot, state])
        with gr.Row():
            clear_btn = gr.Button("🧹 Clear Chat")
            clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state])
    return demo

demo = launch_gradio()
demo.launch()