import os import zipfile import chromadb import gradio as gr from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_core.output_parsers import StrOutputParser from langchain_together import ChatTogether from langchain_community.vectorstores import Chroma from langchain_community.embeddings import HuggingFaceEmbeddings # Log: Check if chroma_store exists if not os.path.exists("chroma_store"): print("๐Ÿ” chroma_store folder not found. Attempting to unzip...") try: with zipfile.ZipFile("chroma_store.zip", "r") as zip_ref: zip_ref.extractall("chroma_store") print("โœ… Successfully extracted chroma_store.zip.") except Exception as e: print(f"โŒ Failed to unzip chroma_store.zip: {e}") else: print("โœ… chroma_store folder already exists. Skipping unzip.") # Initialize ChromaDB client chroma_client = chromadb.PersistentClient(path="./chroma_store") # Vector store and retriever embedding_function = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5") vectorstore = Chroma( client=chroma_client, collection_name="imageonline_chunks", embedding_function=embedding_function ) retriever = vectorstore.as_retriever(search_kwargs={"k": 3, "filter": {"site": "imageonline"}}) # Retrieval logic def retrieve_with_metadata(query, k=5): docs = retriever.get_relevant_documents(query) if not docs: return {"context": "No relevant context found.", "references": []} top_doc = docs[0] return { "context": top_doc.page_content, "references": [{ "section": top_doc.metadata.get("section", "Unknown"), "source": top_doc.metadata.get("source", "Unknown") }] } # LLM setup llm = ChatTogether( model="meta-llama/Llama-3-8b-chat-hf", temperature=0.3, max_tokens=1024, top_p=0.7, together_api_key="a36246d65d8290f43667350b364c5b6bb8562eb50a4b947eec5bd7e79f2dffc6" ) # Prompt template prompt = ChatPromptTemplate.from_template(""" You are an expert assistant for ImageOnline Web Solutions. Answer the user's query based ONLY on the following context: {context} Query: {question} """) rag_chain = ( { "context": lambda x: retrieve_with_metadata(x)["context"], "question": RunnablePassthrough() } | prompt | llm | StrOutputParser() ) def get_references(query): return retrieve_with_metadata(query)["references"] # Gradio UI def chat_interface(message, history): history = history or [] history.append(("๐Ÿง‘ You: " + message, "โณ Generating response...")) try: answer = rag_chain.invoke(message) references = get_references(message) if references: ref = references[0] ref_string = f"\n\n๐Ÿ“š **Reference:**\nSection: {ref['section']}\nURL: {ref['source']}" else: ref_string = "\n\n๐Ÿ“š **Reference:**\n_None available_" full_response = answer + ref_string history[-1] = ("๐Ÿง‘ You: " + message, "๐Ÿค– Bot: " + full_response) except Exception as e: history[-1] = ("๐Ÿง‘ You: " + message, f"๐Ÿค– Bot: โš ๏ธ {str(e)}") return history, history def launch_gradio(): with gr.Blocks() as demo: gr.Markdown("# ๐Ÿ’ฌ ImageOnline RAG Chatbot") gr.Markdown("Ask about Website Designing, Web Development, App Development, About Us, Testimonials etc.") chatbot = gr.Chatbot() state = gr.State([]) with gr.Row(): msg = gr.Textbox(placeholder="Ask your question here...", show_label=False, scale=8) send_btn = gr.Button("๐Ÿ“จ Send", scale=1) msg.submit(chat_interface, inputs=[msg, state], outputs=[chatbot, state]) send_btn.click(chat_interface, inputs=[msg, state], outputs=[chatbot, state]) with gr.Row(): clear_btn = gr.Button("๐Ÿงน Clear Chat") clear_btn.click(fn=lambda: ([], []), outputs=[chatbot, state]) return demo demo = launch_gradio() demo.launch()